・特邀综述・

面向空间应用耐辐照有源光纤研究进展

邵冲云1,于春雷1,2,胡丽丽1,2*

1中国科学院上海光学精密机械研究所强激光材料重点实验室,上海 201800;

2国科大杭州高等研究院,浙江杭州 310024

摘要 稀土掺杂有源光纤激光器或放大器具有重量轻、体积小、电光转换效率高等优点,在空间激光通讯、空间激 光雷达、太空垃圾处理及军事等方面有重要应用价值。然而,常规稀土掺杂有源光纤在太空辐射环境中的辐射诱 导损耗是非稀土掺杂无源光纤的1000倍以上,这给面向空间应用的光纤激光器或放大器的长期稳定性带来了严 峻挑战。本文简要介绍了太空辐照环境、石英光纤在太空中的应用需求和所面临的挑战;然后从三个方面详细介 绍了当前国内外在耐辐照有源光纤领域取得的最新研究成果:1)有源光纤辐致暗化机理,2)有源光纤耐辐射特性 的影响因素,3)提高有源光纤耐辐射特性的方法;最后,对耐辐照有源光纤的未来研究方向进行了展望。

关键词 激光光学;有源光纤;耐辐照;色心;辐射诱导损耗;空间应用 中图分类号 T-19;O756 **文献标志码** A

doi: 10.3788/CJL202047.0500014

Radiation-Resistant Active Fibers for Space Applications

Shao Chongyun¹, Yu Chunlei^{1,2}, Hu Lili^{1,2*}

 ¹Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
 ²Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China

Abstract Owing to their reduced weight, size, and high electronic-optic conversion efficiency, rare earth (RE) doped active fiber lasers or amplifiers are crucial in space-based applications, such as space laser communication, space laser radar, and space waste disposal and military. However, the radiation-induced attenuation of the active (RE-doped) fibers is approximately 1000 times larger than that of passive (RE-free) fibers under the same radiation condition, which poses a severe challenge to the long-term stability of active fiber lasers or amplifiers in space. First, this study briefly introduces the space radiation environment, the application requirements and challenges of silica-based optical fibers in space. Second, the latest research progress in the field of radiation-resistant active fibers, both in China and elsewhere, are systematically introduced from three aspects: 1) the mechanism of radiation-induced darkening of active fibers; 2) the primary factors influencing the radiation resistance of active fibers; 3) the methods to improve the radiation resistance of active fibers. Finally, the potential issues that require further investigation are suggested.

Key words laser optics; active fiber; radiation resistance; color center; radiation induced attenuation; space application

OCIS codes 140.3510; 160.5690; 160.6030

1 引 言

近年来,随着空间激光通讯系统和空间站的建 设,人们对空间应用的激光器提出了迫切需求。稀 土掺杂石英光纤激光器具有重量轻、体积小、电光转 换效率高等优势,在空间激光通讯、激光雷达、太空 垃圾处理、光纤陀螺及军事等方面有重要应用价 值^[1-3]。然而,太空环境中存在大量辐射源,诸如 γ 射线、电子、中子等高能粒子束辐照会使稀土掺杂有 源光纤的损耗急剧增加,激光性能大幅下降,严重时

收稿日期: 2020-01-02; 修回日期: 2020-02-14; 录用日期: 2020-02-18

基金项目: 国家自然科学基金(61875216)

甚至没有激光输出。这一现象称为辐致暗化(RD) 效应^[4-5]。如何有效解决面向空间应用的有源光纤 的 RD 效应是国内外研究者共同面临的难题。需要 从 RD 效应的产生机理、影响因素和抑制方法出发, 对其进行系统研究。

本文简要介绍了太空辐照环境,石英光纤在太 空中的应用需求及所面临的挑战;并从 RD 效应产 生机理、影响因素和抑制方法三个方面详细介绍了 耐辐照有源光纤的研究现状;最后对耐辐照有源光 纤的未来研究方向进行了展望。

2 太空辐照环境

太空是一个微重力、高真空、温差大 (±200 ℃)、强辐射的复杂环境。其中粒子强辐射 对光学和电学器件的影响最为严重。太空中的粒子 主要包含带电粒子、不带电粒子(主要是中子)和电 磁波三大类。其中带电粒子包含质子(氢核)、α离 子(氦核)、正负电子及其他重离子,电磁波包括γ射 线、X射线、紫外线、可见光、红外辐射、太赫兹辐射、 微波和无线电波等。不同粒子的穿透能力和电离能 力差异非常大。带电粒子和电磁波在穿透物质时都 会与物质中的电子或原子核发生相互作用,从而产 生能量消耗,带电粒子会因此慢下来,电磁波则会被 所穿透物质吸收。中子不带电,它只有在与原子核 发生非弹性碰撞时才会被消耗能量,中子的穿透能 力和电离能力与其运动速度密切相关。质子、α离 子和其他重离子束电离能力强,但穿透能力弱,可以 被数张薄纸阻挡。高能电子束可以穿透毫米级别的 铝板,但电离能力弱。高能电磁辐射的穿透能力极 强,尤其是 X 射线和 γ 射线。本课题组早期的实验 结果表明10 mm厚的铅板仅能屏蔽掉50%左右

的γ射线。由此可见,高能电磁辐射是太空中影响 有源光纤耐辐射特性的最主要因素。由于采用物理 屏蔽方法会极大增加激光器质量,严重制约激光器 在太空中的应用。因此,提高有源光纤激光器空间 辐照耐受性的根本出路在于改善有源光纤材料的耐 辐照特性。

图1给出了低地轨道(LEO)、中地轨道(MEO) 和地球同步轨道(GSO)在太空中的空间分布示意 图^[6]。表1汇总了这三个卫星运行轨道的高度、辐 射环境及用途^[6-7]。表1中的辐射总剂量指在太空 舱屏蔽条件下服役7年的累积辐射剂量。该数据来 源于美国国家航空航天局(NASA)^[6]。剂量率根据 总辐射剂量的最大值除以时间得到。辐射剂量是指 单位质量物质接收的平均粒子辐照能量,单位是戈 瑞(Gy)或拉德(rad),1 Gy=1 J/kg=100 rad。由 于南大西洋异常区上空的磁场比其他地方弱30%~ 50%,让更多来自外太空的粒子束得以穿透,因此在 低地轨道(LEO)运转的卫星经过此区域时会遭受 更多的粒子辐照。

图 1 LEO、MEO、GSO 示意图^[6] Fig. 1 Schematic of LEO, MEO, and GSO^[6]

表 1 太空中卫星所在的三个轨道对应的高度、辐射环境及用途[6-7]

Table 1	Altitudes,	radiation environments,	and uses of	f the three	orbits of	satellites in	n space ^[6-7]
---------	------------	-------------------------	-------------	-------------	-----------	---------------	--------------------------

Orbital	Altitude /lam	Dose rate /	Radiation	Dediction none	Orbital use	
name	Annuae/ km	$(rad \cdot min^{-1})$	dose /krad	Radiation zone		
LEO	<2000	<0.027	5-10	South Atlantic anomaly	Earth observation satellite	
MEO	2000-36000	<0.272	10-100	Van Allen belts	Navigation system satellite	
GSO	36000	~ 0.135	~ 50	Galactic cosmic rays	Communication satellite	

3 石英光纤在太空中的应用和挑战

石英光纤具有损耗低、抗电磁干扰、传输光波长 范围宽(0.2~2.1 μm),容易与半导体激光器耦合等 优点,被广泛应用于信息传输、传感、光谱分析等领 域。此外,石英光纤还具有机械强度高、弯曲性能 好、抗辐照性能优良、激光损伤阈值高,及可涂覆气 密型耐高温(≥180 ℃)涂覆层(如镀碳、镀金属)等 优点,特别适合用于太空这种高真空、温差大 (±200 ℃)、强辐射的复杂环境。表2汇总了5种 不同类型石英光纤的特征参数及其在太空中的应用 和所面临的挑战。

2	5 种不同类	[©] 型光纤的	持征参数及	、其在太空中	的应用和挑战
---	--------	-------------------	-------	--------	--------

Table 2 Characteristic parameters of five different types of optical fibers and their applications and challenges in space

Fiber type	Core/cladding size /µm	Core NA	Application	Challenge	Reference
Sensing/communication single mode optical fiber	<10/125	<0.17	Temperature, humidity, pressure sensing, data transmission	Loss increase, Bragg wavelength shift, reflectivity decrease	[8-11]
Sensing/communication multimode optical fiber	50~62.5/125	0.18-0.23	Temperature, humidity, pressure sensing data transmission	Loss increase, Bragg wavelength shift, reflectivity decrease	[8-11]
Polarization maintaining fiber	<10/125	0.12-0.22	Fiber optic gyroscope	Loss increase	[12]
Microstructure fiber	<20/125	<0.06	Large-mode-area, infinite cut-off single mod super radiation resistant	Loss increase de,	[13-14]
Active optical fiber (Yb/Er/Tm, etc.)	<10/125 <25/400	0.06-0.22	Fiber optic gyroscope, laser communication, laser radar, laser remote sensing, laser weapon, space waste disposal, etc.	Loss increase, gain decrease, efficiency decrease, noise figure increase	[15-16]

统计结果表明从 1971 到 1986 年,美国卫星及 其零部件共出现过 1589 次事故,其中由空间粒子辐 照引起的事故约占总事故次数的 70%^[17]。由此可 见,空间粒子辐照严重制约着航天器及其零部件的 正常运行。

表

运行。 emiss emiss 8 2 汇总了粒子辐照对石英基光纤性能的影响, 光纤é

主要包含4方面内容^[18-19]。1)辐射诱导损耗(RIA): 色心的形成导致光纤的RIA急剧增加,严重影响光 纤的导光和激光性能。2)辐射诱导发光(RIE):RIE 包含色心的发光和切伦科夫发光(Cherenkov emission),这些不受欢迎的发光信号使得导光或激光 光纤的信噪比(SNR)下降。3)辐射诱导折射率变化

图 2 粒子辐照对石英基光纤性能的影响

Fig. 2 Effect of radiation on the properties of silica-based fibers

(RIRIC):大剂量粒子辐照诱导石英玻璃的折射率和 密度增加,且增加值与纤芯和包层中的掺杂元素有 关,同时 RIRIC 使得光纤数值孔径(NA)发生改变,进 而影响光纤模式和光束质量。4)辐射诱导涂覆层降 解(RICD):大剂量粒子辐照使得光纤涂覆层的高分 子链断裂(即降解),具体表现为涂覆层变黄变脆,光 纤的机械强度降低,涂覆层与外包层的界面损耗增 加。值得指出的是,通常在大剂量辐射条件(>MGy) 下光纤中才表现出明显的 RIE、RIRIC、RICD。在太 空等小剂量辐射环境(≪1 kGy)中,RIA 是制约光纤 耐辐射性能的最主要因素。

图 3 所示为有源光纤(Yb/Al/P/F 共掺石英光 纤)和无源光纤(Ge 单掺石英光纤)的 RIA 谱^[20]。 辐照源为 X 射线,剂量率为 2.5 Gy/min,总剂量为 500 Gy。在相同辐照条件下,普通有源光纤的 RIA (5228 dB/km)比无源光纤的 RIA(5.1 dB/km)大三 个数量级。由此可见,有源光纤的辐照敏感性远高 干无源光纤。

图 3 有源和无源光纤的 RIA 谱^[20] Fig. 3 RIA spectra of active and passive fibers^[20]

目前,无源光纤的耐辐射性能已基本满足当前 太空应用需求^[8]。但如何有效提高面向空间应用的 有源光纤的耐辐射性能是国内外研究者共同面临的 难题。

4 耐辐照有源光纤的研究现状

20世纪70年代,美国海军实验室的Friebele 等^[21-23]最先采用γ-射线辐照非稀土掺杂的石英光 纤,对光纤辐致损耗的起源、影响因素及对应解决办 法开展了大量的研究工作。21世纪以来,以法国圣 太田大学和里昂大学的Girard等^[7,16,18,24-25]、俄罗 斯科学院的Zotov等^[26-29],以及美国亚利桑那大学 的Fox等^[30-32]为代表的研究人员对稀土(Er、Er/ Yb、Yb)掺杂石英光纤的耐辐射行为开展了研究。 2010年以来,国内华中科技大学^[33-40]、中国科学院 上海光学精密机械研究所^[41-51]、哈尔滨工业大 学^[52-53]、深圳大学^[54-55]、中国电子科技集团公司第 二十三研究所^[3]、西北核技术研究所^[56]、北京航空 航天大学^[57]、北京工业大学^[58]、北京交通大学^[59]、 重庆大学^[60]及长春理工大学^[61]等单位均对稀土 (Er、Er/Yb、Yb、Tm)掺杂石英玻璃及光纤的耐辐 射性能开展了相应研究。纵观国内外报道,耐辐照 有源光纤的研究内容主要包含三个方面:1)有源光 纤RD效应的产生机理;2)影响有源光纤耐辐射特 性的因素;3)提高有源光纤耐辐射特性的方法。下 面分别进行介绍。

4.1 有源光纤 RD 效应的产生机理

4.1.1 粒子辐照与石英玻璃的相互作用

粒子辐照与物质的相互作用包含弹性碰撞和非 弹性碰撞。弹性碰撞是指粒子与物质碰撞前后,只 有入射粒子的方向发生变化,动能不改变。实际上, 发生完全弹性碰撞的概率很低,通常不予考虑。非 弹性碰撞是指粒子与物质碰撞后,不仅方向改变,而 且在碰撞过程中还有动能损失。当入射粒子与原子 核发生非弹性碰撞时,入射粒子损失的动能转移给 原子核,可能导致原子核移位,产生弗兰克缺陷,即 间隙原子与原子空位对。当入射粒子与核外电子发 生非弹性碰撞时,入射粒子损失的动能转移给电子, 使电子被激发或电离。如果电子获得的能量仅使它 从低能级跃迁至高能级,则该过程为激发;如果电子 获得的能量足够使它脱离原子核束缚成为自由电 子,则该过程为电离。

美国海军实验室的 Griscom 等^[62-67] 系统研究 了不同类型的粒子辐照对非稀土掺杂石英光纤(无 源光纤)的影响,并从原子级微观尺度对其影响机理 进行了探究。

图 4(a) 是粒子辐照破坏石英玻璃 Si-O-Si 网络的模型。从微观原子尺度看,粒子辐照对石英 光纤的破坏主要包含两个方面^[18]:1) 原子移位 (atom displacement or knock on);2) 电离破坏 (ionization or radiolysis)。其中原子移位产生氧空 位和间隙氧原子;电离破坏产生电子型色心和空穴 型色心。由于电离破坏所需能量阈值(《8 eV)远低 于原子移位所需能量阈值(》10 eV),因此电离破坏 是粒子辐照对石英光纤的主要破坏机制。

图 4(b)所示为铝单掺石英玻璃的 RIA 谱。研究表明紫外波段的两个吸收峰起源于电子型色心(Si-E'和 Al-E'),可见和近红外波段的两个吸收峰起源于空穴型色心(如Al-OHC)。由此可见,电子

图 4 粒子辐照与石英玻璃的相互作用。(a)粒子辐照破坏石英玻璃中 Si—O—Si 网络的模型;(b)铝单掺石英玻璃的 RIA 谱 Fig. 4 Interaction between ion radiation and silica glass. (a) Model of Si—O—Si network in silica glass destroyed by ion irradiation; (b) RIA spectrum of aluminum single-doped silica glass

型色心和空穴型色心是导致石英基光纤 RIA 强度 急剧增加的最主要原因。

图 5 所示为不同类型的粒子辐照诱导纯石英光 纤产生色心的流程图(根据文献[62-63]改编)。色 心的产生主要包括 5 个阶段:1)粒子辐照阶段。2) 原子移位和电子-空穴对产生阶段。该过程通常是 瞬态的(prompt occurrences),该过程能否发生主要 取决于粒子束能量。对于石英玻璃而言,使氧原子 和硅原子发生原子移位的能量阈值分别为 10 eV 和 18 eV^[18],因此通常氧空位缺陷比硅空位缺陷要多 得多。高纯 SiO₂ 玻璃禁带宽度约为 8 eV,当电子 从价带跃迁至导带时,在价带产生一个空穴,导带产 生一个电子,因此纯石英玻璃产生电子-空穴对色心 的能量阈值约为 8 eV。由于紫外光的能量通常低 于 8 eV, 故 只能 产生 光致 分解 缺 陷 (photolytic defects); 3)激发态弛豫和复合阶段。原子移位导 致间隙原子和原子空位产生,即弗兰克缺陷,间隙原 子与原子空位复合导致弗兰克缺陷湮灭。电子-空 穴对可以通过辐射跃迁和非辐射跃迁两种方式复 合,前者产生发光信号,后者将能量转化成热传递给 晶格。4)载流子俘获和缺陷形成阶段。没有复合的 空穴和电子在粒子辐照过程中可以自由移动,称为 载流子。载流子可能被 SiO₂ 玻璃中的各种格位(如 辐致分解缺陷、预先存在缺陷、杂质离子等)俘获,导 致电子型和空穴型色心形成。在辐射过程中,原子 核从一个间隙位置扩散到另外一个间隙位置,称为 间隙扩散;原子核从一个平衡态位置扩散到一个原 子空位,导致一个新空位的产生,称为空位扩散。空 位扩散所需能量远小于间隙扩散所需能量。因此空

图 5 不同类型的粒子辐照诱导纯石英光纤产生色心的流程图

Fig. 5 Flow chart of color center formation caused by different types of ion irradiation in pure silica fiber

的互扩散往往会导致新的弗兰克缺陷产生。5)扩散 限制阶段(diffusion-limited reaction)。辐致分解碎 片(如 H⁰原子)在扩散过程中倾向于与各种类型的 电子型和空穴型色心发生化学反应,形成更加稳定 的缺陷(如≡Si-H,≡Si-OH等),或者自身通过 二聚反应形成稳定分子(H₂,Cl₂,O₂等),导致载流 子扩散过程被钉轧,即扩散被限制。此外,杂质俘获 缺陷、原子移位缺陷及二聚反应生成物(如 H₂)在辐 射过程中有可能进一步发生化学反应,生成更加稳 定的缺陷,导致扩散过程被进一步钉轧。自俘获缺 陷(如 STH)通常是一种亚稳态缺陷,它可以依靠自 由扩散离子(如 H⁺)的电荷补偿变为稳定缺陷。间 隙原子和空位在大剂量辐照条件下倾向于各自聚集 在一起,从而产生胶体(colloids)和气泡(bubbles, 如 H₂, Cl₂, O₂等),导致空位和间隙原子的扩散过 程被钉轧。

4.1.2 辐射诱导稀土离子变价和氧空穴色心形成

有源光纤的辐射敏感性远高于无源光纤,且 有源光纤 RD 机理目前尚不完全清楚。为了增加 稀土(RE)离子在石英基质中的溶解度,调控纤芯 折射率,通常需要在有源光纤纤芯引入多种共掺 离子,如 Al^{3+} 、 P^{5+} 、 Ge^{4+} 、 F^{-} 等。俄罗斯科学院的 Likhachev 等^[29]的研究结果表明掺 Er³⁺石英光纤 的 RIA 与共掺离子的选择和其共掺比例有关。德 国 Menlo Systems GmbH 公司的 Lezius 等^[68]的研 究表明 Er³⁺离子浓度变化并不会明显增加光纤在 近红外波段的 RIA,并推测引起稀土掺杂石英光 纤 RIA 急剧增加的主要原因是形成了与共掺剂 (如 Ge、Al、P等)相关的色心,但没有报道色心的 本质和形成机理。日本藤仓株式会社的 Arai 等^[69]采用连续波电子顺磁共振(CW-EPR)和光学 吸收谱研究发现了铝氧空穴色心(Al-OHC)是导 致 Yb³⁺/Al³⁺共掺石英光纤 RD 效应的主要原因, 但 Al-OHC 的形成机理没有报道。法国巴黎综合 理工学院的 Deschamps 等^[70]采用光学吸收、拉曼 (Raman)、CW-EPR 等手段研究发现,在 Yb³⁺/ Al³⁺/P⁵⁺共掺光纤预制棒中,Al-OHC浓度随 P/ Al 共掺比例的增加而下降,并推测 AlPO₄在抑制 Al-OHC 形成的过程中扮演着重要角色。美国亚 利桑那大学的 Fox 等^[31]研究发现 Yb³⁺/Er³⁺共掺 光纤比 Er³⁺ 单掺光纤具有更好的抗辐射性能,其 原因被推测与 Yb³⁺离子易发生价态变化(Yb³⁺→ Yb²⁺)有关。法国巴黎萨克雷大学的 Ollier 等^[71] 采用在线荧光光谱测试发现在辐射 Yb³⁺/Al³⁺共

掺石英光纤过程中有部分 Yb³⁺ 被还原为 Yb²⁺,并 由此 推 测 了 Yb²⁺ 离 子 在 RD 过 程 中 扮 演 重 要 角色。

在上述研究基础上,上海光机所胡丽丽课题 组^[44,49]系统对比研究了 Yb³⁺ 单掺(SY)、Yb³⁺/ Al³⁺双掺(SYA)、Yb³⁺/P⁵⁺双掺(SYP),及 Yb³⁺/ Al³⁺/P⁵⁺ 三掺(SYAP)且 P/Al 比变化的石英玻璃 及光纤的耐辐射行为,并从 Yb³⁺离子局部结构、玻 璃网络结构、辐射诱导色心等原子级微观尺度出发, 系统研究了掺 Yb³⁺ 石英光纤的 RD 机理。下面以 Yb³⁺ 单掺石英玻璃为例进行说明。

图 6(a)是 Yb³⁺ 单掺石英玻璃的原位光致发 光谱,激光源为 193 nm ArF 准分子激光器。图 6 (b)和图 6(c)分别是纯石英玻璃(SiO₂)和 Yb³⁺ 单 掺石英玻璃(Yb:SiO₂)的 RIA 谱,及其高斯分峰拟 合。图 6(d)是 SiO₂ 和 Yb:SiO₂样品的 CW-EPR 谱,及其理论模拟结果。图 $6(b) \sim (d)$ 中所用样品 均指193 nm激光辐射 100 min 的样品。

从图 6(a)可以看出,随着泵浦时间增加,Yb³⁺ (976 nm)的发光强度逐渐下降,Yb²⁺(530 nm)和 硅氧空穴色心(Si-OHC,650 nm)的发光强度逐渐 增加。这说明在辐射过程中有部分 Yb³⁺离子被还 原为 Yb²⁺离子。

从图 6(b)中可以看出,Yb:SiO₂的 RIA 强度远 高于 SiO₂ 样品的 RIA 强度。这说明共掺 Yb³⁺会 降低玻璃的抗辐射性能,性能降低与辐致 Yb²⁺离子 的形成有关,如图 6(c)所示。如图 6(b)所示,SiO₂ 样品的 RIA 谱被分解成 7 个高斯峰,它们分别位于 2.0,2.4,3.2,4.1,4.8,5.1,5.7 eV。其中 3.2 eV 和 4.1 eV吸收带归因于 Al 相关缺陷,这是因为该玻璃 在高温熔制过程中不可避免地从刚玉坩埚壁上引入 少许 Al 杂质。Griscom 等^[64]的研究表明:2.0,2.4, 5.1,5.7 eV 吸收带分别归因于硅氧空穴中心(Si-OHC 或 NBOHC)、自捕获空穴中心(STH)、非弛 豫硅氧空位[ODC(II)]和硅悬挂键缺陷(Si-E'); 4.8 eV吸收带归因于过氧基(POR)和 Si-OHC 吸收 的叠加。

如图 6(c)所示,Yb:SiO₂样品的 RIA 谱被分解 成 10 个高斯峰,它们分别位于 1.96,2.5,3.1,3.7, 4.0,4.7,4.8,5.3,5.8,6.5 eV。其中 1.96,2.5,5.8 eV 吸收带分别归因于 Si-OHC、STH 和 Si-E';3.1,3.7, 4.0,4.7,5.3,6.5 eV(对应 400,335,310,265,234, 190 nm)吸收带归因于 Yb²⁺离子。

如图 6(d)所示,SiO2 样品的 CW-EPR 谱被分

解成三个部分,分别对应 POR、Si-E'和 Si-OHC 缺陷。它们的结构模型可以分别表示为 \equiv Si=O=O•, \equiv Si•和 \equiv Si=Oo,其中" \equiv "代表三个桥氧,

图 6 辐射诱导色心的表征。(a) Yb³⁺ 单掺石英玻璃(Yb:SiO₂)的原位光致发光谱;(b)纯石英玻璃(SiO₂)的 RIA 谱; (c) Yb:SiO₂玻璃的 RIA 谱;(d) 193 nm 激光辐照 100 min 后 SiO₂ 和 Yb:SiO₂样品的 CW-EPR 谱

Fig. 6 Characterization of radiation-induced color centers. (a) In situ photoluminescence spectra of Yb³⁺ single-doped silica glass (Yb:SiO₂); (b) RIA spectra of pure silica glass (SiO₂); (c) RIA spectra of Yb:SiO₂ glass; (d) CW-EPR spectra of SiO₂ and Yb:SiO₂ samples after 193 nm laser irradiation for 100 min

从图 6(b)和图 6(c)可以看出,相对于 SiO_2 样 品,Yb:SiO₂样品中 Yb²⁺、Si-OHC、STH 的 RIA 强 度增加,Si-E' 的 RIA 强度下降,氧空位色心 ODC (II)完全被抑制。从图 6(d)也可以看出,相对于 SiO₂ 样品,Yb:SiO₂ 样品中 Si-OHC 的 CW-EPR 强度增加,Si-E' 的 CW-EPR 强度下降。这说明 Yb^{3+/2+}离子的价态变化在 Yb:SiO₂样品的 RD 过 程中扮演重要角色。相对于 SiO₂ 样品,Yb:SiO₂样 品中的 Yb³⁺离子在辐射过程中通过俘获大量电子 变成 Yb²⁺离子,抑制电子型色心(Si-E')产生,同时 促进空穴型色心(Si-OHC、STH)生成。

进一步的研究表明^[46-47,49-50],Yb²⁺和氧空穴色 心(OHC)对是导致掺Yb³⁺石英光纤RD效应的最 根本原因。相应的化学反应式可表示为

> $Yb^{3+} - O - R \equiv \rightleftharpoons Yb^{2+} +$ $\circ O - R \equiv (R = Al, Si, P), \qquad (1)$

如图 7 所示,脉冲 EPR 谱(HYSCORE 投影方

"•"代表一个单电子,"。"代表一个空穴。由于²⁹Si

(核自旋 I = 1/2)的自然丰度(~4.7%)比较低,因

此没有观察到其超精细结构。

法)测试结果表明^[72]:在 Yb³⁺ 单掺石英玻璃中,存 在大量的 Yb—O—Si 连接;在 Yb³⁺/Al³⁺ 双掺石 英玻璃中,Yb³⁺离子处于 Yb—O—Al 和 Yb—O— Si 的混合配位环境中;在 Yb³⁺/P⁵⁺ 双掺石英玻璃 中,主要以 Yb—O—P 连接为主;在 Yb³⁺/Al³⁺/ P⁵⁺三掺石英玻璃中,随着 P/Al 共掺比例($R_{P/AI}$, 0.25→2)增加,Yb³⁺逐渐从富硅或富铝环境转移 到富磷环境。值得指出的是:当 $R_{P/Al} \approx 1$ 时 (SYAP1),Al³⁺和P⁵⁺优先形成AlPO₄单元,并富 聚在Yb³⁺离子周围;当 $R_{P/Al} < 1$ 时,Yb³⁺主要处 于富铝或富硅环境中;当 $R_{P/Al} > 1$ 时,Yb³⁺主要处 于富磷环境中。需要说明的是,配位于Yb³⁺第一 壳层的氧原子没有被观察到,这是因为磁性核¹⁷O 的自然丰度(~0.038%)远低于 HYSCORE 探测 极限。

原位紫外激发荧光光谱和 CW-EPR 谱测试结 果表明^[49],辐射引入的 Yb²⁺和 OHC 对在 Yb³⁺/ Al³⁺共掺石英玻璃中最多,在 Yb³⁺/P⁵⁺共掺石英 玻璃中最少,这与 Yb³⁺离子配位基团的电荷量有 关。Yb²⁺和 OHC 对形成模型如图 8 所示。

图 8 Yb³⁺掺杂石英玻璃中辐致色心形成模型^[49]

Fig. 8 Formation model of color centers caused by irradiation in Yb³⁺-doped silica glass^[49]

在 Yb³⁺/Al³⁺双掺石英玻璃中,Yb³⁺周围主要 是 [SiO_{4/2}]^o 和 [AlO_{4/2}]⁻ 基团。电负性的 [AlO_{4/2}]⁻在辐射过程中容易俘获一个空穴(即释 放出一个电子)变成 Al-OHC,释放出的电子被 Yb³⁺俘获,从而大量 Yb³⁺被还原为 Yb²⁺。因此, Yb³⁺/Al³⁺双掺石英玻璃的抗辐照性能最差。

在 Yb³⁺ 单掺石英玻璃中,Yb³⁺ 主要配位于 [SiO_{4/2}]⁹基团。电中性的[SiO_{4/2}]⁹在辐射过程中不 易得失电子,在辐射过程中只有少量 Yb³⁺ 被还原为 Yb²⁺。因此,与 Yb³⁺/Al³⁺ 双掺石英玻璃相比较, Yb³⁺ 单掺石英玻璃的抗辐照性能明显改善。

在 Yb³⁺/P⁵⁺ 双掺石英玻璃中,Yb³⁺周围主要 是[O = PO_{3/2}]⁰ 基团(即 P⁽³⁾ 基团)。P⁽³⁾ 基团的 P = O双键在辐射过程中非常容易断裂,起到吸收 射线能量的作用,此外在辐射过程中 P = O 双键同 时扮演电子俘获中心和空穴俘获中心的角色,辐致 Yb²⁺ 和稳态 P-OHC 对明显减少。因此,与 Yb³⁺ 单 掺或 Yb³⁺/Al³⁺ 双掺石英玻璃相比,Yb³⁺/P⁵⁺ 双掺 石英玻璃的抗辐照性能最好。值得指出的是,由 P = O双键电离产生的 P₁色心吸收峰位于 1.6 μm 处,该色心会严重恶化 Er³⁺离子的发光性质。

在 Yb³⁺/Al³⁺/P⁵⁺ 三掺石英玻璃中,随着 P/Al

共掺比例(0.25→2)的增加,辐射引入的 Yb²⁺ 和 OHC 对逐渐减少,玻璃的抗辐照性能逐渐改善。 当 $R_{P/Al} < 1$ 时,铝和磷优先形成电中性的[AlPO₄]^o 单元,并环绕在 Yb³⁺离子周围,多余的铝主要以电 负性的 $[AlO_{4/2}]^-$ 单元环绕在 Yb^{3+} 离子周围。 Yb³⁺和[AlO_{4/2}]⁻在辐射过程中分别俘获电子和空 穴,导致大量 Yb²⁺ 和 Al-OHC 形成。当 $R_{P/Al} = 1$ 时, Yb^{3+} 周围主要是电中性的 $\lceil AlPO_4 \rceil^{\circ}$ 基团, 「AlPO4]°与「SiO4/2]°结构类似,在辐射过程中不易 得失电子。因此,铝和磷等掺在一定程度上可以提 高掺 Yb³⁺ 石英玻璃的抗辐射性能。当 $R_{P/AI} > 1$ 时, 绝大部分铝和磷优先形成电中性的[AlPO4]°结构 单元,处于远离 Yb3+离子的位置,而多余的磷主要 以电中性的 $[O = P - O_{3/2}]^{\circ}$ (即 P⁽³⁾)结构环绕在 Yb3+离子周围。此时,Yb3+离子的局部结构与 Yb³⁺/P⁵⁺双掺石英玻璃中的局部结构类似。因此, 辐射引入的 Yb²⁺ 和 P-OHC 对相对于 $R_{P/Al} \leq 1$ 样 品明显减少,玻璃的抗辐射性能明显改善。

在辐射过程中,正电性的稀土离子通常俘获电 子使自身被还原,负电性的配位基团通常失去电子, 即俘获空穴,形成 OHC。目前,稀土离子变价 (RE³⁺→RE²⁺)和 OHC 形成被普遍认为是有源光 纤发生 RD 效应的根本原因^[46-47,73-75]。除 Yb^{3+/2+} 离子外,粒子辐照诱导 Ce^{4+/3+}、Sm^{3+/2+}、Eu^{3+/2+}、 Er^{3+/2+}、Tm^{3+/2+}等稀土离子发生价态变化也已被 公开报道^[74,76-80]。

4.1.3 石英玻璃中常见点缺陷介绍

除 RE²⁺ 和 OHC 对外,粒子辐照还会诱导有源 光纤产生一些掺杂剂(Al、P、Ge)相关的色心。值得 指出的是,尽管氟也是有源石英光纤的常用掺杂剂, 但目前尚没有氟相关色心的报道。表 3 汇总了纯石 英玻璃,及铝单掺、磷单掺、锗单掺石英玻璃中常见 点缺陷的结构模型、吸收和发射光谱及 CW-EPR 谱 的特征值。从表 3 中可以看出,有发光信号(PL)的 缺陷通常没有 CW-EPR 信号,反之亦然。因此,吸 收谱结合发射谱或 CW-EPR 谱是研究石英玻璃中 点缺陷的有力手段。

表 3 石英玻璃中常见点缺陷的结构模型、光谱和 CW-EPR 谱特征值

Table 3 Structural models, characteristic values in optical and CW-EPR spectra of common point defects in silica glass

		Optical spectra			CW-EPR sp		
Defect	Structural model	Absorption	n Absorption	PL peak /eV	I ande factor	Hyperfine coupling	Reference
Defect						onstant (A_1 , A_2	,
		peak / e v	r writer / ev		(g_1, g_2, g_3)	A_3)/G	
ODC (I)	≡Si—Si≡	7.6	0.5	2.7/4.4	None	None	[81-83]
Si-E'	≡Si •	5.8	0.8	None	(2.0018, 2.0006, 2.0003)	Not observed	[63-64,83]
ODC (II)	\equiv Si • • Si \equiv	4.95-5.05	0.3	2.7 /4.4	None	None	[81-83]
NBOHC	≡Si—O°	4.8/2.0	1.05/0.18	1.85-1.95	(1.9999,2.0095,2.078)	Not observed	[63-64,83]
POR	\equiv Si $-0-0$ ·	4.8/1.97	0.8/0.175	None	(2.0018,2.0078,2.067)	Not observed	[63-64,83]
POL	\equiv Si $-$ O $-$ O $-$ Si \equiv	3.8	Not reported	None	None	None	[63,83]
Cl_2	Cl—Cl	3.8	0.7	None	None	None	[83]
STH	\equiv Si $-$ O° $-$ Si \equiv	2.6/2.16	1.5/1.2	None	(2.0054,2.0078,2.0125)	Not observed	[63-65,83]
O_2	$\mathbf{O} = \mathbf{O}$	1.62/0.97	0.012/0.011	0.97	None	None	[83]
Al-ODC	\equiv Al••Si \equiv	4.96	0.47	2.6/3.4	None	None	[49]
Al-E'	\equiv Al •	4.1	1.02	None	2.0023	50	[49,84-85]
Al-OHC	\equiv Al $-$ O \circ	3.2/2.3	1.0/0.9	None	(2.0402,2.017,2.0039)	(4.7,10.3,12.7)	[49,85-86]
P4	$-\mathbf{P} \bullet -$	4.8	0.41	None	(2.0014,1.9989,1.9989)	300	[67]
P2	$= \mathbf{P} \cdot =$	4.5	1.27	None	(2.002,1.999,1.999)	800-1600	[67]
l-POHC	$\equiv P - O^{\circ}$	3.1	0.73	None	(2.0039,2.0027,2.0026)	(50,41,48)	[67]
r-POHC	$= P - O_{2}^{\circ}$	2.2,2.5	0.35,0.63	None	(2.0179,2.0097,2.0075)	(54,52,48)	[67]
P1	$\equiv_{\mathbf{P}}$.	0.79	0.29	None	(2.002,1.999,1.999)	910	[67]
GLPC	=Ge :	5.15	0.42	4.3	None	None	[25,87]
Ge(1)	= Ge • =	4.4	1.2	None	(2.0006,2.0000,1.9930)	Not observed	[25,88]
Ge-E'	$\equiv Ge \bullet$	6.2	0.7	None	(2.0012,1.9951,1.9941)	Not observed	[87-88]
Ge(2)	\equiv Ge • -Ge \equiv	5.8	0.7	None	(2.0010,1.9989,1.9867)	Not observed	[87-88]
Ge-OHC	\equiv Ge $-$ O°	2.1	1	1.85	Not reported	Not reported	[25]
Ge-STH	Not clear	0.54	0.5	None	Not reported	Not reported	[25]

根据表 3 中数据,上海光机所邵冲云等^[20]采用 MATLAB模拟了石英玻璃中常见点缺陷的吸收光 谱和 CW-EPR 谱。其中图 9(a)和图 9(b)分别是纯 石英玻璃中常见点缺陷的吸收光谱和 CW-EPR 谱。 图 10(a)和图 10(b)分别是铝单掺石英玻璃中常见 点缺陷的吸收光谱和 CW-EPR 谱。图 11(a)和图 11(b)分别是磷单掺石英玻璃中常见点缺陷的吸收 光谱和 CW-EPR 谱。图 12(a)和图 12(b)分别是锗 单掺石英玻璃中常见点缺陷的吸收光谱和 CW-EPR 谱。

4.2 有源光纤耐辐照特性的影响因素

图 13 汇总了影响有源光纤耐辐射特性的三大 主要因素:光纤参数、环境参数、应用参数(根据文 献^[7]整理)。其中光纤参数是影响有源光纤耐辐射 特性的最主要因素,它包含光纤的纤芯、包层及涂覆 层成分,光纤的光学几何参数,及光纤的制备工艺三 方面。环境参数包含辐射粒子的种类、总剂量和剂 量率、环境温度三个方面。应用参数包括光纤泵浦 结构、泵浦波长、泵浦功率、光纤长度、光纤使用历史 5 个方面。以下分别对这三个影响因素进行介绍。

Fig. 9 Spectra of point defects in pure silica glass^[20]. (a) Absorption spectra; (b) CW-EPR spectra

图 10 铝单掺石英玻璃中常见点缺陷的光谱^[20]。(a)吸收光谱;(b) CW-EPR 谱 Fig. 10 Spectra of point defects in Al-doped silica glass^[20]. (a) Absorption spectra; (b) CW-EPR spectra

图 11 磷单掺石英玻璃中常见点缺陷的光谱^[20]。(a)吸收光谱;(b) CW-EPR 谱

图 12 锗单掺石英玻璃中常见点缺陷的光谱^[20]。(a)吸收光谱;(b) CW-EPR 谱 Fig. 12 Spectra of point defects in Ge-doped silica glass^[20]. (a) Absorption spectra; (b) CW-EPR spectra

4.2.1 光纤参数

研究表明光纤结构对光纤的耐辐射特性有很大 影响。图 14 是 Er 掺杂双包层光纤和 Er 掺杂光子 晶体光纤在波长 1550 nm 处的 RIA 强度随辐射剂 量的变化[55],插图为光子晶体光纤横截面。随着辐 射剂量的增加,两根光纤的 RIA 强度都趋于饱和; 当辐射剂量达到 494 Gy 时, Er 掺杂双包层光纤的 RIA 强度(28 dB/14.5 m)比 Er 掺杂光子晶体光纤 的 RIA 强度(3.6 dB/14.5 m) 大一个数量级。这个 结果说明光子晶体光纤的抗辐射特性远优于普通双 包层光纤。Wu 等[55] 把它归结为光子晶体光纤中 Ge含量偏低,产生的Ge相关色心相对较少。然 而,需要指出的是,Ge相关色心的吸收主要位于紫 外-可见波段(详见图 12),近红外波段的 Ge-STH 和 Ge-OHC 在室温下不稳定。此外,早期研究表明 增加 Ge 含量在一定程度上可以提高 Er 掺杂光纤 的抗辐照性能^[89-90]。本文作者认为光子晶体光纤抗 辐照性能优于双包层光纤可能与它们的光纤结构不 同有关。通常来说,光子晶体光纤的包层厚度远大 于双包层光纤的包层厚度,这在一定程度上可以屏 蔽外界射线对纤芯的影响。另一方面,双包层石英 光纤的外包层通常采用低折射率的高分子材料,其 外表面再涂覆一层高折射率的高分子材料作为保护 层,而光子晶体光纤的外包层通常为纯石英玻璃,且 外表面不再涂覆高分子材料保护层。高分子材料在

图 14 Er³⁺掺杂双包层光纤和 Er³⁺掺杂光子晶体 光纤在波长 1550 nm 处的 RIA 强度随辐射剂量的变化^[55] Fig. 14 Variation of RIA intensity with radiation dose at 1550 nm in Er³⁺-doped double clad fiber and Er³⁺-doped photonic crystal fiber^[55]

辐照过程中非常容易降解和老化,进而导致内外包 层之间及外包层和保护层之间的界面损耗急剧增 加。Olanterä等^[13]和 Girard等^[91]的研究表明纯石 英芯微结构光纤(如光子晶体光纤和空心光纤)的耐 辐照特性优于常规双包层纯石英芯光纤,这个结果 排除了纤芯成分的差别,再次证实了光纤结构确实 会显著影响光纤的耐辐照特性。

然而,必须指出的是,关于光纤结构对有源光纤 抗辐照性能影响的报道相对较少。是否所有微结构 光纤的耐辐照特性都优于双包层光纤?如果是,那 么其根本原因是什么?这些问题的答案,本实验室 目前正在寻找中。

光纤的耐辐射特性。其中纤芯成分对光纤的耐辐射特性。其中纤芯成分对光纤的耐辐射特性。其中纤芯成分对光纤的耐辐射特性影响最大。为了调控纤芯折射率或增加稀土离子在石英玻璃中的溶解度,纤芯玻璃通常需要共掺Ge、Al、P、F、RE等元素。这些共掺元素在辐射过程中会形成相应色心导致石英光纤的损耗急剧增加。辐射诱导掺杂石英玻璃形成的Si、Al、P、Ge相关色心光谱如图9~12所示,稀土离子相关色心主要与稀土离子变价有关,氟相关色心目前鲜有报道。

图 15(a)和图 15(b)分别是纤芯中的杂质元素

(OH和 Cl)^[92]和掺杂元素(Ge、P、Er/Al)^[93]对石 英光纤耐辐射性能的影响。从图 15(a)可以看出, Cl和 OH 含量 最低的光纤的耐辐射性能最好,随 着 OH 含量增加,光纤在 650 nm 处的 RIA 增加。 这是因为 \equiv Si-OH 是形成 NBOHC 缺陷的前驱 体。随着 Cl含量增加,Cl相关色心(主要是 Cl₂ 分 子,吸收峰约为 350 nm)的形成导致光纤的 RIA 急剧增加^[92]。从图 15(b)可以看出,纯石英光纤 的耐辐射性能最好,Er/Al 共掺光纤的耐辐射性能 最差,P 单掺和 Ge 单掺光纤的耐辐射性能介于两 者之间^[93]。

图 15 光纤中元素对双包层光纤 RIA 谱的影响。(a)杂质元素(OH 和 Cl)^[92];(b)掺杂元素(Ge、P、Er/Al)^[93] Fig. 15 Effects of elements in fiber on RIA spectra of double clad fibers. (a) Impurity elements (OH and Cl)^[92]; (b) doped elements (Ge, P, Er/Al)^[93]

光纤的包层成分和涂覆层材料在一定程度上也 会影响光纤的耐辐射性能。研究表明采用掺氟石英 玻璃作为外包层可以提高石英光纤的耐辐射性能。 相对于纯石英包层光纤,当光纤包层材料中含有 P、 Ge等元素时,光纤的辐照耐受性会急剧下降^[18]。 聚酰亚胺涂层(polyimide)比丙烯酸酯涂层 (acrylate)具有更好的抗辐射性能^[94]。此外,丙烯 酸酯涂层在辐射过程中会释放出 H⁺或 H₂ 并向光 纤包层和纤芯扩散, H⁺或 H₂ 与 SiO₂ 反应生成 OH,导致光纤在 1.39 μ m 处的损耗增加^[95]。

光纤的制备工艺也是影响光纤耐辐射特性的重要因素。日本NTT电气通信实验室的Hanafusa等^[96]最早报道了拉丝工艺参数对光纤耐辐射性能的影响。研究表明光纤的RIA随着拉丝速度的增加和拉丝温度的下降而降低。法国圣太田大学的Girard等^[97]研究发现降低预制棒沉积温度和拉丝张力在一定程度上可以降低锗硅酸盐光纤在1310 nm和1550 nm处的瞬态脉冲X射线诱导损耗。其原因可能是多方面的。例如,在预制棒制备过程中氧分压不同可能会导致预制棒中产生过氧

(如 POL)或缺氧(如 ODC)缺陷,光纤在拉制过程 中受拉丝张力的影响可能出现一些悬挂键缺陷(如 Si-E')。这些预先存在的缺陷都会影响所拉制光纤 的耐辐照特性。此外,预制棒制备和拉丝工艺不同, 所拉制光纤的假想温度也可能不同。众所周知,玻 璃是一种亚稳态物质,它的结构介于熔体与晶体之 间。当玻璃淬冷成固体后,玻璃的诸多物化性质与玻 璃熔体在冷却过程中某温度点的性质相当。这一特 征的温度点被美国科学家 Tool^[98]定义为玻璃的假想 温度(fictive temperature, T_f)。日本丰田技术学院的 Wang 等^[99]的研究表明纯石英玻璃中辐射诱导 STH 的浓度正比于玻璃的 T_f 。此外,大量研究表明石英 玻璃的 T_f 越低,其抗辐照性能越好^[100-101]。

4.2.2 环境参数

环境参数包含辐射粒子的种类(质子、中子、电 子、X射线、γ射线等)、辐射模式(脉冲或连续辐射)、总剂量和剂量率、环境温度4个方面。

如图 16(a) 所示,50 MeV 和 105 MeV 的质子及 γ射线对 Er³⁺/Al³⁺ 共掺石英光纤 RIA 谱的影响基 本一致。这说明质子与 γ 射线这两种不同类型的射 线诱导光纤形成的色心种类和数量基本一致[93]。

如图 16(b)所示,稳态伽马射线和瞬态 X 射线 对 Ge 掺杂和 N 掺杂纤芯光纤的 RIA 谱的影响基 本一致^[102],然而稳态和瞬态辐射对纯石英光纤的 RIA 谱的影响差别很大。主要原因为 STH 在室温 下不稳定, 而 NBOHC 在室温下可以稳定存在。因此, STH 在瞬态辐射中对 RIA 谱的贡献最大, 而 NBOHC 在稳态辐射中对 RIA 谱的贡献最大^[103]。

图 16 辐射粒子种类对光纤 RIA 谱的影响。(a)伽马和质子辐射对 Er³⁺/Al³⁺

共掺光纤 RIA 谱的影响^[93];(b)稳态伽马射线和瞬态 X 射线对无源光纤 RIA 谱的影响^[102]

Fig. 16 Effects of radiation particles on RIA spectra of fiber. (a) Effects of gamma and proton radiation on RIA spectra of Er^{3+}/Al^{3+} co-doped fiber^[93]; (b) effects of steady gamma rays and transient X-rays on RIA spectra of passive fiber^[102]

如图 17(a)所示:在总剂量保持一定时,氟单掺 石英光纤在 1310 nm 处的 RIA 随剂量率的增加而 增加,随信号光功率(10 μW→350 μW)的增加而下 降;但信号光波长(1310 nm→1500 nm)和环境温度 (25 ℃→35 ℃)变化对氟单掺光纤 RIA 谱没有明显 影响^[104]。如图 17(b)所示,当辐射剂量率(5 Gy/s) 和总剂量(1 kGy)保持一致时,磷单掺石英光纤的 RIA 随环境温度的上升而下降^[105]。

图 17 总剂量、剂量率及温度对石英光纤 RIA 谱的影响。(a)总剂量和剂量率对氟单掺石 英光纤 RIA 谱的影响^[104];(b)温度对磷单掺石英光纤 RIA 谱的影响^[105]

Fig. 17 Effects of total dose, dose rate, and temperature on RIA spectra of silica fiber. (a) Effects of total dose and dose rate on RIA spectra of fluorine-doped silica fiber^[104]; (b) effects of temperature on RIA spectra of phosphorus-doped silica fiber^[105]

4.2.3 应用参数

应用参数包括光纤泵浦结构、光纤长度、泵浦光 波长、泵浦光功率、光纤使用历史 5 个方面。法国里 昂大学的 Ladaci 等^[106]的研究表明采用粒子群算法优 化掺铒光纤放大器(EDFA)的各项参数(如光纤长度、 泵浦方式等)可进一步提高 EDFA 的耐辐射性能。

图 18 所示为 980 nm 泵 浦 光 功 率 对 Er³⁺/ Al³⁺ 共掺光纤 RIA 谱的影响^[107]。辐照源为 γ 射 线,辐射总剂量为 330 krad。可以看到,随着泵浦 光功率增加,RIA 强度逐渐下降。通常,泵浦光的 波长越短,泵浦功率越高,泵浦光对辐射诱导色心 的漂白效率就越高。俄罗斯科学院的 Zotov 等^[26] 研究发现980 nm比 1480 nm 激光对 RD 后的掺 Er³⁺光纤具有更高的漂白效率,并认为采用 980 nm激光泵浦掺 Er³⁺光纤在一定程度上可以抑 制其 RD 效应。

此外,光纤的辐照历史和热处理历史也会影响 光纤的耐辐射特性。早在1995年,美国海军实验室

Er³⁺ / Al³⁺ -doped fiber^[107]

的 Griscom 等^[108-109] 就 发 现 采 用 超 大 剂 量 率 (>1 MGy)的伽马射线对纯石英芯光纤进行预辐射 处理,可以提高光纤的耐辐射性能。美国 Photon-X LLC 公司的 Yeniay 等^[110]研究发现采用 γ 射线预 辐射结合热退火(165 ℃)处理可以提高 Yb³⁺/Er³⁺ 掺杂光纤的耐辐射性能。

4.3 提高有源光纤耐辐照特性的方法

如图 19 所示,提高光纤耐辐射性能的方法主要 包含以下 4 方面:1)组分优化;2)预处理;3)后处理; 4)系统优化。以下分别进行介绍。

图 19 提高有源光纤耐辐射性能的方法 Fig. 19 Methods to improve radiation resistance of active fiber

4.3.1 组分优化

组分优化主要是指纤芯玻璃组分优化。Al、P、 Ge 等共掺元素主要用来调控纤芯折射率和提高稀 土离子在石英玻璃中的溶解度。然而这些共掺元素 会导致光纤的抗辐射性能急剧下降。因此,纤芯组 分优化主要从以下三个方面着手。

 減少辐照敏感性元素。法国蒙彼利埃第二大 学与 Draka Comteq BV 公司合作研发出一种新型的 稀土离子掺杂技术——纳米颗粒掺杂^[111]。与传统的 改良的化学气相沉积(MCVD)结合溶液浸泡法掺杂 相比,纳米颗粒掺杂技术可以在保证 Er³⁺离子不发 生浓度淬灭前提下,尽可能降低 Al 或 P 等共掺剂的 掺杂浓度,甚至可以不掺杂 Al 或 P 等辐照敏感元素。 因此,采用这种方法制备的光纤往往具备较好的抗辐 射性能。然而,仅仅依靠纳米颗粒掺杂技术并不能有 效抑制稀土离子团簇。为避免浓度淬灭效应,这种方 法要求稀土离子的质量占比小于 1000×10⁻⁶。

2) 优化共掺元素比例。如图 20 所示,俄罗斯

科学院的 Likhachev 等^[29]系统研究了 Er、Al、P、 AlPO4、Ge 以不同形式单掺和共掺对石英光纤 RIA 谱的影响,其中 AlPO4 是指 Al 和 P 等摩尔量掺杂 所形成的结构单元。研究结果表明 Er/Al 双掺光 纤(9 #)的抗辐射性能最差,Er-AlPO4-Ge 共掺光纤 (6 #)的抗辐射性能最好。法国巴黎第十大学的 Babu 等^[112]研究发现 Er/Al/Ge 共掺预制棒的耐辐 射性能远优于 Er/Al 共掺预制棒,且当 Ge/Al 共掺 比例稍大于 1 时,芯玻璃的抗辐射性能达到最佳。 中科院上海光机所的邵冲云等^[49]研究发现 Yb/Al/ P 共掺石英玻璃的抗辐射性能远优于 Yb/Al 共掺 石英玻璃,且当 P/Al 的共掺比例稍大于 1 时,玻璃 的抗辐射性能达到最好。

3) 共掺变价离子 Ce^{3+/4+}。法国圣太田大学和 里昂大学的 Girard 课题组^[113-116] 研究发现,共掺一 定含量 Ce^{3+/4+} 对掺 Er³⁺石英光纤的激光性能影响 不大,且能明显提高光纤的抗辐射性能。下面通过 具体实例作进一步介绍。

图 21(a)和图 21(b)分别是 Ce 含量对 P/Er/ Yb/Ce 掺杂石英光纤的发射谱和激光斜率效率的 影响^[113]。相对于 P/Er/Yb(不含 Ce)样品,P/Er/ Yb/Ce(Ce 含量低)和 P/Er/Yb/Ce+(Ce 含量高) 样品的发光强度和激光斜率效率只是稍有下降。说 明共掺一定含量的 Ce 不会明显恶化掺 Er 石英光 纤的发光和激光性能。

图 21 Ce 含量变化对 P/Er/Yb/Ce 掺杂石英光纤性能的影响^[113]。 (a)发射谱;(b)激光斜率效率;(c)在线辐射下的增益;(d)离线辐射下的增益

Fig. 21 Effect of Ce content on the properties of P/Er/Yb/Ce-doped silica fiber^[113]. (a) Emission spectra; (b) laser slope efficiency; (c) gain performance under on-line radiation; (d) gain performance under off-line radiation

图 21(c)和图 21(d)分别是在线辐射和离线辐射 条件下 Ce 含量对 P/Er/Yb/Ce 掺杂石英光纤增益性 能的影响^[113]。在线辐射是指掺 Er 光纤在辐照过程 中同时进行原位的增益放大实验,离线辐射是指掺 Er 光纤辐射结束后,再进行增益放大实验。无论是 在线辐射还是离线辐射,相对于 P/Er/Yb 样品,P/ Er/Yb/Ce和P/Er/Yb/Ce+样品的增益下降幅度明 显减小。这说明共掺Ce可以明显提高掺Er光纤的 抗辐照性能。在相同辐射剂量条件下,相对于离线辐 射,在线辐射诱导掺Er光纤增益下降的幅度更小。 这说明在线辐照过程中存在光漂白和热漂白效应。

图 22(a)和图 22(b)分别是 X 射线、γ 射线、电 子束、质子束这 4 种辐照源对 P/Er/Yb 和 P/Er/ Yb/Ce 共掺石英光纤中 Er³⁺离子⁴I_{13/2}能级荧光寿 命的影响^[115]。对于 P/Er/Yb 样品,Er³⁺的⁴I_{13/2}能 级荧光寿命随着辐照剂量增加呈明显下降趋势;对 于 P/Er/Yb/Ce 样品,随着辐照剂量增加,Er³⁺ 的⁴I_{13/2}能级荧光寿命基本不变。进一步说明共掺 Ce 可以明显提高 Er 光纤的抗辐照性能。需要说明 的是,未经辐照的 P/Er/Yb/Ce 样品中 Er³⁺的⁴I_{13/2} 能级荧光寿命(~7.2 ms)明显短于 P/Er/Yb 样品 中 Er³⁺的⁴I_{13/2}能级荧光寿命(~9 ms)。这说明, Er³⁺的⁴I_{13/2} →⁴I_{15/2}能级(~3700 cm⁻¹)与 Ce³⁺ 的²F_{5/2}→²F_{7/2}能级(~2100 cm⁻¹)之间存在能量转 移。共掺 Ce³⁺的含量过高,必然会导致掺 Er³⁺ 光纤 的发光和激光性能恶化。

(a) P/Er/Yb co-doped silica fiber;
 (b) P/Er/Yb/Ce co-doped silica fiber
 图 23 所示为 P 单掺和 P/Ce 共掺石英光纤经
 上海光机所的 部冲云等^[50]

图 23 所示为 F 单零和 F/Ce 共零石英九 f 星 300 Gy的 γ 射线辐照后的 RIA 谱^[116]。经辐照后,P 单掺光纤在 1600 nm 处有个强的宽带吸收峰,该吸 收峰对应一个磷相关缺陷,通常称之为 P₁色心,它 的结构模型可以表示为" \equiv P•"。相对于 P 单掺光 纤,P/Ce 共掺石英光纤辐照后没有观察到 P₁色心 吸收峰,这说明共掺 Ce 可以抑制 P₁色心的产生。 P₁色心的吸收峰位置与 Er³⁺发光峰重叠,它的存在 必然会导致 Er³⁺的发光淬灭。

上海光机所的邵冲云等^[50]结合吸收、荧光、X 射线光电子能谱(XPS)和 CW-EPR 谱等手段系统 研究了 Ce 含量对 Yb/Al/Ce 共掺石英玻璃耐辐照 性能的影响及其机理。研究表明玻璃的抗辐照性能 与 Ce 含量成正相关,其抗辐照机理与 Ce^{3+/4+}离子 价态变化有关。Ce³⁺通过俘获空穴变成 Ce⁴⁺抑制 空穴型色心 Al-OHC 的产生,Ce⁴⁺通过捕获电子变 成 Ce³⁺抑制电子型色心,如:Yb²⁺、Al-E'、Si-E'的 产生。华中科技大学的 Liu 等^[117]研究发现共掺 Ce^{3+/4+}可以促进暗化后的 Yb³⁺光纤漂白。然而, 需要指出的是,共掺 Ce^{3+/4+}会增大纤芯折射率和数 值孔径,影响激光光束质量。邵冲云等^[45]进一步研 究发现,在 Yb/Al/Ce 共掺基础上引入 F,不但可以 有效降低石英光纤的纤芯折射率,而且还可以在一 定程度上进一步提高玻璃的抗辐照性能。

4.3.2 预处理

预处理是指对辐照前的光纤或预制棒进行辐照 加固处理,它包含预载气、预辐照、预退火三种方式。 以下分别进行介绍。

1) 预载气。载气是指在高温或高压条件下,促 使某种气体扩散进光纤或预制棒中,所用气体通常 是氢气或氘气。早在1967年,美国科学家就已发现 载氢 (H_2) 可以提高玻璃的抗辐射性能^[118]。1985 年,日本科学家证实载 H₂ 可以提高纯石英光纤的 抗辐射性能[119]。2007年,俄罗斯的 Zotov 等[27-28] 首次证实载 H。可以提高掺 Er3+石英光纤的抗辐射 性能。2018年,华中科技大学李进延课题组[37]研究 发现载氘(D₂)可以有效提高掺 Tm³⁺ 石英光纤的抗 辐射性能。然而,载 H2 或载 D2 提高有源光纤抗辐 射性能的缺点在于:① H2 或 D2 以分子形式进入光 纤,在大气环境中仅三个月就几乎全部从光纤中扩 散出去,导致光纤的抗辐射性能回到原来。尽管采 用气密性的碳涂覆或金属涂覆层可以有效解决气体 外溢问题[3],但增加了工艺的复杂性,且密封涂层光 纤载气需要更高的温度和压力。② 如果载入光纤 中的气体浓度过高, $H_2(1.24 \ \mu m)$ 或 $D_2(1.71 \ \mu m)$ 分子在近红外波段强烈的吸收会导致有源光纤的激 光斜率效率明显降低。③高温载气会严重破坏高分

子基涂覆层的力学性能。

为解决以上三个问题,法国圣太田大学的 Girard 等^[120-121]设计了一种新的光纤结构,称为空 气孔辅助的碳涂层(hole-assisted carbon-coated)光 纤,简称为HACC光纤。这种光纤的纤芯包含 Er、 Al、Ge、Ce这4种元素,内包层有6个空气孔,涂覆 层是密封的碳涂覆层,如图 24(a)所示。对于这种 HACC 光纤,可以在低温条件下通过空气孔对光纤 进行载氘(D₂)或载氢(H₂);然后,调控空气孔中气 体含量,使得掺 Er 光纤的增益和抗辐照性能均达到 最佳效果:最后,在光纤两端熔接上密闭的导光光纤, 阻止气体外溢。研究发现这种 HACC 光纤的气体溢 出速率比普通双包层的载氢光纤低两个数量级。 HACC 光纤的 RIA 比耐辐射丙烯酸酯涂层(RTAC) 光纤低一个数量级,如图 24(b)所示。经100 krad的 γ 射线辐照后,HACC 光纤的增益下降低于 5%,而其 他光纤的增益下降均超过15%,如图24(c)所示。但 这种方法的缺点在于:1)工艺复杂;2)对光纤结构有 特殊要求,不适用于普通双包层光纤。

图 24 HACC 光纤的结构与性能。(a) HACC 光纤结构示意图^[120]; (b) RIA 谱^[120];(c)增益下降与辐照剂量的关系^[121]

Fig. 24 Structure and performance of HACC fiber. (a) Structure diagram of HACC fiber^[120];
(b) RIA spectra^[120]; (c) relationship between gain decrease and radiation dose^[121]

2)预辐照。1995年,美国海军实验室的 结合热键 Griscom等^[108-109]研究发现对纯石英芯光纤进行大 度上可以 剂量(≥10⁷ rad)预辐照处理,可以使得纯石英光 照过程中 纤在后续辐射过程中 400~700 nm 波段的 RIA 增 的耐温性 加量不超过 30 dB/km。2013年,美国 Photon-X 还是热潮

LLC 公司的 Yeniay 等[110] 研究发现 γ射线预辐射

结合热退火(在165 ℃保温365 h)处理在一定程 度上可以提高Yb³⁺/Er³⁺共掺石英光纤在后续辐 照过程中的耐辐照特性。然而,高分子基涂覆层 的耐温性较差(≪180 ℃),这就要求不论是光漂白 还是热漂白都不能温度太高,即无法彻底漂白色 心,这导致辐射过的光纤的损耗恢复到原始状态。 此外,通过预辐照方法提高光纤抗辐照性能的机 理可能与 H⁺ 的扩散有关。研究发现丙烯酸酯涂 层在辐射过程中释放出 H⁺ 或 H₂ 并向光纤包层和 纤芯扩散,H⁺或H₂与SiO₂反应生成OH,导致光 纤在 1.39 μm 处的损耗增加^[95]。上海光机所的 Liu 等[122] 研究发现提高光纤中 OH 含量,在一定 程度上可以提高掺 Yb³⁺ 石英玻璃的抗辐照性能。 2015年,Griscom等^[123]发表刊误指出,他在 1995 年对光纤进行大剂量预辐照时,将部分光纤浸泡 在水中。在辐射过程中,水中的 H⁺离子及丙烯酸 酯涂层中辐致降解产生的 H⁺都很有可能扩散进 入光纤纤芯并与 SiO₂ 反应生成 Si-OH,从而提高 光纤的抗辐照性能。2016年,韩国光州科学技术 院的 Kim 等^[124]研究发现预辐照处理并不能提高 掺氟石英光纤在后续辐射过程中近红外波段的抗 辐射性能。

3)预退火。2001年,日本科学与技术振兴事 业团的 Hosono 等^[125]对纯石英玻璃进行了变温 (1400/1200/1100/900 ℃)热退火处理,目的是改变 玻璃的假想温度(T_f)。结果表明降低纯石英玻璃 假想温度(T_f)可以显著提高玻璃的耐辐射性能。 2016年,法国巴黎第十大学的 Babu 等^[100]在不同温 度(900/1000/1100/1200/1300 ℃)下对 Er^{3+} 单掺 石英光纤预制棒进行热退火处理以改变其假想温度 (*T_f*),发现降低预制棒假想温度(*T_f*)能有效提高其 耐辐射性能。

对预载气、预辐照和预退火三种预处理方式进行组合应用,不但可以进一步提高光纤的抗辐照性能,而且还能有效阻止气体外溢。然而,这种组合方法不适用于直接对光纤进行预处理,主要原因有两点:1)高温载气或大剂量预辐照会加速光纤的高分子基涂覆层老化(变黄变脆),影响光纤机械强度和使用寿命;2)大剂量预辐照会诱导光纤产生色心,导致光纤的背景损耗增加。受限于光纤高分子基涂覆层耐温性较差,对光纤进行光漂白和热漂白都只能部分降低其 RIA。

2019年,上海光机所的邵冲云等^[48]对有源光纤预制棒依次进行了载氘、预辐射、热退火预处理,预处理条件和实验流程详见图 25。CW-EPR测试结果表明:在相同辐射条件下,采用所提方法处理过的预制棒芯棒中的辐致色心浓度比未处理芯棒低一个数量级以上。应用所提方法所获得的芯棒可以用来制备耐辐射稀土掺杂石英光纤,且具备激光斜率效率高、背景损耗低、在真空环境中可长时间稳定使用等优点。下面结合具体实例对该预处理方法进行进一步说明。

图 25 有源光纤预制棒的预处理及其光纤性能评估流程图[48]

Fig. 25 Flow chart of pretreatment of active fiber preform and its fiber performance evaluation^[48]

图 26(a)和图 26(d)是使用原始掺镱石英光纤 预制棒(未经预处理)所拉制的光纤经γ射线辐照前 后的损耗谱和激光斜率效率曲线。图 26(b)和图 26 (e)是氢气预处理预制棒所拉制光纤在γ射线辐照 前后的损耗谱和激光斜率效率曲线。图 26(c)和图 26(f)是氘气预处理预制棒所拉制光纤在γ射线辐 照前后的损耗谱和激光斜率效率曲线。激光斜率效 率采用空间耦合方式进行测试,泵浦源为 976 nm 的半导体激光器,测试所用掺镱光纤长度为 25 m。

为方便对比,表4统计了三根光纤在γ射线辐 照前后在波长1200 nm 处的背景损耗和激光斜率 效率具体数值。γ射线辐照的总剂量约为700 Gy, 该剂量对应卫星在地球同步轨道服役10年所吸收 的累计辐照剂量。

图 26 预制棒所拉制光纤的损耗谱和激光斜率效率曲线^[48]。 (a)(d)原始预制棒;(b)(e)载 H₂ 预处理预制棒;(c)(f)载 D₂ 预处理预制棒

Fig. 26 Loss spectra and laser slope efficiency curves of optical fibers drawn by preforms ^[48].

(a)(c) Pristine preform; (b)(e) loading H_2 pretreated preform; (c)(f) loading D_2 pretreated preform

表 4 原始、载氢预处理、载氘预处理预制棒制备的掺镱石英光纤辐照前后的激光斜率效率和波长 1200 nm 处的背景损耗值 Table 4 Laser slope efficiency and background loss at 1200 nm of ytterbium doped silica fibers drawn by pristine, loading H₂, and loading D₂ pretreated preforms

Optical fiber	Loss@1200 nm /(dB•km ⁻¹)		Slope efficiency / %		Decrease in efficiency by pretreatment $/ \frac{9}{0}$		
parameter	0 Gy	700 Gy	0 Gy	700 Gy	0 Gy	700 Gy	
Pristine	~ 6	~ 533	79	0	0	100	
H_2 pretreated	~ 83	$\sim \! 130$	45	32	43	29	
D_2 pretreated	~ 20	$\sim \! 70$	75	59	5	21	

γ射线辐照前(0 Gy),原始、载氢预处理、载氘 预处理光纤在波长 1200 nm 处的背景损耗分别约 为 6 dB/km、83 dB/km、20 dB/km,三根光纤的激 光斜率效率分别为 79%、45%、75%。γ射线辐照后 (700 Gy),原始、载氢预处理、载氘预处理光纤在波 长 1200 nm 处的背景损耗分别约为 533 dB/km、 130 dB/km、70 dB/km,三根光纤的激光斜率效率 分别为 0、32%、59%。

从图 26 和表 4 可以看出,载氢或载氘预处理 都可以显著提高掺 Yb³⁺光纤的抗辐照性能。然 而,载氢预处理会严重恶化未辐照掺 Yb³⁺光纤的 激光性能,使得激光斜率效率从 79%下降到 45%,光纤损耗从 6 dB/km 增加到 83 dB/km;载 氘预处理对未辐照掺 Yb³⁺光纤的激光性能不会产 生明显负面影响,激光斜率效率从 79%下降到 75%,光纤损耗从 6 dB/km 增加到 20 dB/km。其 根本原因与 OH 和 OD 基团的吸收峰位置及吸收 强度有关。

众所周知,玻璃在红外波段的吸收主要来源于 分子振动。分子振动的频率(ν)取决于振动基团中 阴离子和阳离子的约化质量(μ)和键力常数(K),它 们之间的关系为^[126]

$$\nu = \frac{1}{2\pi c} \sqrt{\frac{K}{\mu}} \,, \tag{2}$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2},\tag{3}$$

式中:c 表示光速; m_1 和 m_2 分别表示阴离子和阳离子 的摩尔质量。根据(2)式和(3)式可知,OH 基团的振 动频率约为 OD 基团振动频率的 1.37 倍。已知 OH 的本征振动峰位于 2.7 μ m 处,第一倍频峰和第二倍 频峰分别位于 1.38 μ m 和 0.95 μ m 处^[127]。可以推导 出 OD 的本征振动峰位于 3.8 μ m 处,第一倍频峰和 第二倍频峰分别位于 1.87 μm 和 1.26 μm 处。研究 结果表明,OH 本征振动峰强度为第一倍频峰强度的 50~60 倍,约为第二倍频峰强度的 2500 倍以上^[128]。

根据上述结论,给出了 OD 和 OH 基团在800~4000 nm 波段的主要吸收峰位置及强度,如图 27 所示(图片根据文献[128]采用 MATLAB 绘制),可以看出,相对于 OD 基团,OH 基团的吸收峰波长更加靠近 Yb³⁺离子的泵浦和激光波长。因此,与相同含量的 OD 基团相比,OH 基团对 Yb³⁺离子荧光和激光性能的负面影响更大。

图 27 OH 和 OD 基团的主要振动吸收峰。(a) 500~4000 nm 波段;(b) 800~2000 nm 波段

Fig. 27 Main vibration absorption peaks of OH and OD groups. (a) 500-4000 nm; (b) 800-2000 nm

4.3.3 后处理

后处理是指对辐照后的光纤进行漂白处理,它 包含热漂白、光漂白和气氛漂白三种方式。

1) 热漂白。在一定温度范围内,升高温度会导 致光纤的辐照诱导损耗下降,甚至完全回到辐射前 的水平,这种现象称为热漂白。1997年,美国普林 斯顿大学的 Ramsey 等^[129]研究发现加热可以漂白 辐射后的石英光纤,且温度越高漂白效果越好。芬 兰阿尔托大学的 Söderlund 等^[130]研究发现彻底漂 白掺 Yb³⁺光纤需要将温度升高到 600 ℃以上。然 而,高温热漂白对普通双包层光纤的涂覆层提出了 一个非常大的挑战。

2) 光漂白。1981 年,美国海军实验室的 Friebele 等^[131]研究发现采用 0.85 μm 的半导体激 光器泵浦γ射线辐射过的光纤可以观察到光纤的 RIA 随着时间推移逐渐下降,这种现象称为光漂 白。后续的研究进一步表明,泵浦功率越高,泵浦波 长越短,泵浦时间越长,暗化后光纤的漂白效果就越 好^[26,107]。

3) 气氛漂白。气氛漂白是指对辐射过的光纤进行载气处理可以降低光纤的辐照诱导损耗。华中科技大学的 Xing 等^[36-39,132]以掺 Tm³⁺ 石英光纤为

研究对象,系统研究了光漂白和气氛漂白对辐照暗 化后掺 Tm³⁺光纤的损耗和激光斜率效率的影响。 下面结合实例作进一步介绍。

2015年,Xing等^[36]报道了采用 793 nm 半导体 激光器长时间泵浦不同剂量 γ射线辐照后的掺 Tm³⁺光纤,可以使得暗化后光纤的损耗有所下降, 激光斜率效率有所增加,如图 28(a)和图 28(b)所 示。研究结果表明,泵浦光只能部分漂白暗化后光 纤,且辐射剂量越大,漂白效果越差。当辐射剂量为 700 Gy时,暗化光纤被光漂白的程度仅为 66%,即 漂白后光纤的激光斜率效率(37%)仅相当于未辐照 光纤激光斜率效率(56.3%)的 66%。必须指出:光 漂白的效率低,所需时间长(>70 h);光漂白的漂白 效果差,且沿光纤长度方向分布不均匀,泵浦端漂白 比较彻底,远离泵浦端漂白不完全。

为解决上述问题,Xing 等^[38]于 2018 年提出对 掺 Tm³⁺光纤进行气氛漂白,具体方案为对辐照后 光纤进行高压载气处理。气体为 95% N₂ 和 5% D₂ 的混合气体,或者 95% N₂ 和 5% H₂ 的混合气体,或 者 100% N₂。载气压力和载气时间分别为 0.3 MPa 和 48 h,载气温度为室温。实验结果表明,高压载 氮几乎没有漂白效果,高压载氘的漂白效果远优于 载氢的漂白效果。图 28(c)和图 28(d)分别是高压 载氘对暗化后掺 Tm³⁺光纤损耗谱和激光斜率效率 的影响。从图 28(c)和图 28(d)中可以看出:漂白后 光纤的损耗谱和激光斜率效率与未辐照光纤的损耗 谱和激光斜率效率相差不大;且随着辐射剂量的增 加,漂白效果并没有明显变差。当辐射剂量为 1000 Gy时,暗化光纤被气氛漂白的程度高达 92%, 即漂白后光纤的激光斜率效率(52.4%)相当于未辐 照光纤激光斜率效率(57%)的 92%。由此可见,相 对于光漂白,气氛漂白的效果更好,效率更高。

图 28 漂白处理对不同剂量 γ 射线辐照后掺 Tm³⁺石英光纤损耗谱和激光斜率效率的影响。 (a)(b)光漂白^[36];(c)(d)气氛漂白^[38]

Fig. 28 Effect of bleaching on the loss spectra and laser slope efficiency of Tm^{3+} -doped fiber irradiated by different doses of γ -ray. (a)(b) Photobleaching^[36]; (c)(d) atmosphere bleaching^[38]

4.3.4 系统优化

正如 4.2 节所述,影响光纤耐辐照特性的因素 包含三个方面:光纤参数、辐照环境、应用参数。4.3 节中前三个提高光纤耐辐照特性的方法(即组分优 化、预处理、后处理)均只涉及光纤元器件的优化,而 在实际应用中,还应综合考虑辐照环境和应用参数 这两方面因素对光纤激光器或放大器系统稳定性能 的影响。

法国里昂大学的 Girard 课题组^[107,133-137]最早提 出从系统优化角度出发,全面提升光纤激光器或放 大器的抗辐照特性。总体思路如图 29 所示:1)通过 优化光纤结构、玻璃组分、制备工艺等手段全面提升 光纤元器件的抗辐照性能,获得激活离子的光谱参 数(如吸收截面、发射截面、荧光寿命等),为后续理 论模拟创造条件;2)明确激光器或放大器的服役条 件,如辐射总剂量、剂量率、温度等;3)在以上基础 上,通过理论模拟优化激光器或放大器的系统参数, 如光纤长度、泵浦方式、泵浦波长、泵浦功率等,并结 合具体实验验证理论模拟结果。下面通过一个具体 实例进行说明。

图 30(a)~(c)分别是载氢与否、光纤长度、泵浦 方式对 EDFA 抗辐照性能的影响,图 30(d)对比了元 件优化和系统优化对 EDFA 抗辐照性能的影响^[137]。

图 30(a)的实验条件为有源光纤长 8 m,泵浦方 式为同向泵浦(即泵浦光和信号光位于光纤的同一 端)。从图 30(a)可以看出,载氢 EDFA 辐照诱导的增 益下降远小于不载氢 EDFA。不论是载氢还是不载 氢的 EDFA,实验结果和模拟结果的最大误差不超过 3%,由此可以证实理论模拟的正确性和可靠性。

通过理论模拟优化载氢 EDFA 器件中掺铒光 纤长度,结果如图 30(b)所示,泵浦方式假设为同向 泵浦。模拟结果表明:在未辐照EDFA中,有源光

图 29 通过系统优化提高光纤激光器或放大器抗辐照特性的总体思路

Fig. 29 General idea of improving radiation hardness feature of fiber laser or amplifier through system optimization strategy

图 30 系统优化提高耐辐照特性^[137]。(a)~(c)模拟载氢与否、光纤长度、

泵浦方式对 EDFA 抗辐照性能的影响;(d)实验对比元件优化和系统优化对载氢 EDFA 抗辐照性能的影响 Fig. 30 Radiation resistance improved by system strategy^[137]. (a)-(c) Influence of hydrogen loading, fiber length, and pumping mode on the radiation resistance of EDFA through software simulation; (d) influence of component strategy and system strategy on the radiation resistance of EDFA through experimental method

纤长度为 7 m 时增益最大;随着辐照剂量增加,有 源光纤的最优长度逐渐缩短;当辐照剂量为 300 krad时,有源光纤的最佳长度为 6 m。

通过理论模拟三种泵浦方式(双向、同向、反向) 对载氢 EDFA 抗辐照性能的影响,结果如图 30(c) 所示,假设光纤长度为8m。双向泵浦假设有两个 泵浦光(~45mW)分别从光纤的两端注入,信号光 位于光纤的其中一端;同向泵浦假设只有一个泵浦 光(~90mW)与信号光从光纤的同一端注入;反向 泵浦假设只有一个泵浦光(~90mW)和一个信号 光分别从光纤的两端注入。模拟结果表明:双向泵 浦时,EDFA的增益最大,辐射诱导的增益下降最 小;反向泵浦时,EDFA的增益最小,辐射诱导的增 益下降最大;同向泵浦的效果介于两者之间。很显 然,双向泵浦最有利于提高载氢 EDFA 的抗辐照 性能。

通过具体实验对比了元件优化和系统优化对载 氢 EDFA 抗辐照性能的影响,结果如图 30(d)所示。 如果仅优化光纤元器件,当光纤长度为 8 m,泵浦方 式为反向泵浦时,载氢 EDFA 的增益从辐照前的 23.5 dB 逐渐下降到 300 krad 辐照后的 14 dB,下降 了 9.5 dB。如果考虑系统优化,当光纤长度为 6 m, 泵浦方式为双向泵浦时,载氢 EDFA 的增益从辐照 前的 27 dB 逐渐下降到 300 krad 辐照后的 24 dB, 仅下降 3 dB。由此可见,系统优化可以有效提高光 纤激光器或放大器的抗辐照性能。

5 展 望

本文从三个方面详细介绍了面向空间应用耐辐 照稀土掺杂有源光纤的最新研究进展:1)有源光纤 RD 机理; 2) 有源光纤耐辐射特性的影响因素; 3) 提 高有源光纤耐辐射特性的方法。未来可以从以下 5 个方面对耐辐照有源光纤开展进一步研究。1)目前 关于掺铒和掺镱石英光纤的耐辐照特性的研究最 多,辐照加固技术也相对较为成熟。由于不同稀土 离子掺杂石英光纤的玻璃组分、工作波长及单模截 止频率所需的数值孔径不同,且掺铒或掺镱光纤的 辐照加固技术不一定适用于其他稀土离子(如 Tm³⁺)掺杂光纤。因此,有必要对不同稀土离子掺 杂石英光纤的耐辐照特性有针对性地开展系统研 究。2)影响有源光纤耐辐照特性的因素极为复杂, 既包括光纤本征参数,又包含环境和应用参数。目 前尚没有一套完善的理论可以准确地模拟和预测有 源光纤的耐辐照特性。加速辐照实验仍旧是目前评 估有源光纤耐辐照特性的最好方法。未来应加强理 论研究,努力构建有源光纤耐辐照特性理论预测模 型。3)尽管诸多有源光纤辐照加固方法被相继提 出,然而这些方法的影响机理和长期有效性目前尚 不完全清楚。比如为什么降低石英玻璃及光纤的假 想温度可以提高它们的抗辐照性能? 其机理是什 么? 是否可以拓展到其他玻璃系统? 再比如适当增 加有源光纤中羟基含量可以提高其抗辐照性能,其 机理是什么? 是否具有长期抗辐照稳定性? 因此, 未来应系统研究不同辐照加固方法背后的物理起

源,评估其长期抗辐照稳定性,并将不同辐照加固方 法有机整合后加以综合应用。4)光纤的暗化与漂白 是一个动态平衡过程。在非辐射环境下,泵浦光既 可以诱导有源光纤出现光子暗化效应,又可以在一 定程度上漂白已暗化的光纤。相应地,在辐射环境 中,泵浦光也会对有源光纤的暗化程度产生影响。 因此,在泵浦过程中,开展有源光纤同时在辐照环境 下的原位在线测试,使实验环境更加接近实际工作 环境,现实意义更大。5)面向空间应用的光纤激光 器处于一个强振动、高真空、温差大(±200℃)、恶 劣辐射的复杂环境。航天器在升空和着陆过程中必 然伴随着剧烈振动,这要求激光系统采取全光纤化 结构。真空条件下,激光器散热比较慢,且光纤中一 些小分子气体(如 H₂/Cl₂)易扩散到光纤外。稀土 离子 4f 轨道电子在不同 Stark 能级的概率遵循玻 尔兹曼分布,与温度密切相关。辐致色心的稳定性 也严重依赖于外界温度。故外界温度变化必然会引 起有源光纤的激光性能和抗辐照性能发生变化。与 单一、稳定的伽马加速辐照实验条件不同,太空中射 线源多、剂量率偏低,且剂量率大小随时间和空间随 时在变,当出现太阳粒子事件时,可能会遭遇瞬态强 辐射。因此,未来的研究有必要综合评估振动强度、 真空度、温度变化和辐射条件对有源光纤激光性能 和抗辐照性能的影响。

致谢 感谢楼风光、王孟、张磊三位老师和焦艳同学 在预制棒制备、光纤拉制及性能测试过程中给予的 帮助。感谢中国科学院上海应用物理研究所提供的 伽马辐照源。

参考文献

- Powell D. Lasers boost space communications [J]. Nature, 2013, 499(7458): 266-267.
- [2] Wright M W, Valley G C. Yb-doped fiber amplifier for deep-space optical communications [J]. Journal of Lightwave Technology, 2005, 23 (3): 1369-1374.
- [3] Huang J P, Zhang G, Wang P P, et al. Research of radiation resistant Er doped fiber for space detection[J]. Proceedings of SPIE, 2016, 10141: 1014108.
- [4] Duchez J B, Mady F, Mebrouk Y, et al. Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers [J]. Optics Letters, 2014, 39(20): 5969-5972.
- [5] Williams G M, Friebele E J. Space radiation effects on erbium-doped fiber devices: sources, amplifiers,

and passive measurements [C] // RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No. 97TH8294), September 15-19, 1997, Cannes, France. New York: IEEE, 1997: 399-404.

- [6] Ott M N, Jin X D, Chuska R, et al. Space flight requirements for fiber optic components: qualification testing and lessons learned [J]. Proceedings of SPIE, 2006, 6193: 619309.
- [7] Girard S, Morana A, Ladaci A, et al. Recent advances in radiation-hardened fiber-based technologies for space applications [J]. Journal of Optics, 2018, 20(9): 093001.
- [8] Ott M N. Radiation effects data on commercially available optical fiber: database summary [C] // IEEE Radiation Effects Data Workshop, July 15-19, 2002, Phoenix, AZ, USA. New Tork: IEEE, 2002: 24-31.
- [9] Gusarov A, Hoeffgen S K. Radiation effects on fiber gratings [J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 2037-2053.
- [10] Berghmans F, Brichard B, Fernandez A F, et al. An introduction to radiation effects on optical components and fiber optic sensors[M] // Bock W J, Gannot I, Tanev S. Optical waveguide sensing and imaging. Dordrecht: Springer, 2008: 127-165.
- [11] Perry M, Niewczas P, Johnston M. Effects of neutron-gamma radiation on fiber Bragg grating sensors: a review[J]. IEEE Sensors Journal, 2012, 12(11): 3248-3257.
- [12] Friebele E J, Gingerich M E, Brambani L A, et al.
 Radiation effects in polarization-maintaining fibers
 [J]. Proceedings of SPIE, 1990, 1314: 146-154.
- [13] Olanterä L, Sigaud C, Troska J, et al. Gamma irradiation of minimal latency hollow-core photonic bandgap fibres [J]. Journal of Instrumentation, 2013, 8(12): C12010.
- [14] Girard S, Yahya A, Boukenter A, et al. γradiation-induced attenuation in photonic crystal fibre[J]. Electronics Letters, 2002, 38(20): 1169-1171.
- [15] Girard S, Ouerdane Y, Tortech B, et al. Radiation effects on ytterbium- and ytterbium/erbium-doped double-clad optical fibers[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3293-3299.
- Girard S, Ouerdane Y, Vivona M, et al. Radiation effects on rare-earth doped optical fibers [J]. Proceedings of SPIE, 2010, 7818: 78170I.
- [17] Velazco R, Fouillat P, Reis R. Radiation effects on embedded systems [M]. Dordrecht: Springer, 2007.

- [18] Girard S, Kuhnhenn J, Gusarov A, et al. Radiation effects on silica-based optical fibers: recent advances and future challenges [J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 2015-2036.
- [19] Deng T, Xie J L, Luo J, et al. Review of study on irradiation resistance properties of optical fibers[J]. Optical Communication Technology, 2007, 31(9): 58-61.
 邓涛、谢峻林、罗杰、等、光纤抗辐射性能研究回顾

与展望[J]. 光通信技术, 2007, 31(9): 58-61.

[20] Shao C Y. Study on structure, spectrum, radiation resistance and radiation-induced darkening mechanism of Yb³⁺-doped silica glasses [D]. Beijing: University of Chinese Academy of Sciences, 2019
 邵冲云. 掺 Yb³⁺ 石英玻璃的结构、光谱和耐辐照性

能及辐致暗化机理研究[D].北京:中国科学院大学, 2019.

- [21] Friebele E J, Griscom D L, Stapelbroek M, et al. Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica [J]. Physical Review Letters, 1979, 42(20): 1346-1349.
- [22] Friebele E J, Long K J, Askina C G, et al. Overview of radiation effects in fiber optics [J]. Proceedings of SPIE, 1985, 541: 70-88.
- [23] Friebele E J. Radiation protection of fiber optic materials: effect of cerium doping on the radiationinduced absorption [J]. Applied Physics Letters, 1975, 27(4): 210-212.
- [24] Girard S, Laurent A, Vivona M, et al. Radiation effects on fiber amplifiers: design of radiation tolerant Yb/Er-based devices [J]. Proceedings of SPIE, 2011, 7914: 79142P.
- [25] Girard S, Alessi A, Richard N, et al. Overview of radiation induced point defects in silica-based optical fibers[J]. Reviews in Physics, 2019, 4: 100032.
- [26] Zotov K V, Likhachev M E, Tomashuk A L, et al. Radiation resistant Er-doped fibers: optimization of pump wavelength [J]. IEEE Photonics Technology Letters, 2008, 20(17): 1476-1478.
- [27] Zotov K V, Likhachev M E, Tomashuk A L, et al. Radiation-resistant erbium-doped fiber for spacecraft applications[C] // 2007 9th European Conference on Radiation and Its Effects on Components and Systems, September 10-14, 2007, Deauville, France. New York: IEEE, 2007: 450-453.
- Zotov K V, Likhachev M E, Tomashuk A L, et al.
 Radiation-resistant erbium-doped silica fibre [J].
 Quantum Electronics, 2007, 37(10): 946-949.
- [29] Likhachev M E, Bubnov M M, Zotov K V, et al. Radiation resistance of Er-doped silica fibers: effect

of host glass composition[J]. Journal of Lightwave Technology, 2013, 31(5): 749-755.

- [30] Fox B P, Simmons-Potter K, Kliner D A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers [J]. Journal of Non-Crystalline Solids, 2013, 378: 79-88.
- [31] Fox B P, Simmons-Potter K, Thomes W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents [J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1618-1625.
- [32] Fox B P, Schneider Z V, Simmons-Potter K, et al. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers[J]. IEEE Journal of Quantum Electronics, 2008, 44(6): 581-586.
- [33] Sheng Y B, Yang L Y, Luan H X, et al. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses[J]. Acta Physica Sinica, 2012, 61(11): 116301.
 盛于邦,杨旅云,栾怀训,等.γ辐照对掺 Er 硅酸 盐玻璃吸收和发光特性的影响[J].物理学报, 2012, 61(11): 116301
- [34] Sheng Y B, Xing R X, Luan H X, et al. Gamma radiation effects on the optical properties of Yb-doped silicate glasses [J]. Journal of Inorganic Materials, 2012, 27(8): 860-864.
 盛于邦,邢瑞先,栾怀训,等.伽马辐照对掺镱硅酸盐玻璃光学性能的影响[J].无机材料学报,
- 2012, 27(8): 860-864.
 [35] Huang H Q, Zhao N, Chen G, et al. Effects of γ-radiation on Yb-doped fiber [J]. Acta Physica Sinica, 2014, 63(20): 200201.
 黄宏琪,赵楠,陈瑰,等.γ射线辐照对掺 Yb 光纤 材料性能的影响[J].物理学报, 2014, 63(20): 200201.
- [36] Xing Y B, Zhao N, Liao L, et al. Active radiation hardening of Tm-doped silica fiber based on pump bleaching [J]. Optics Express, 2015, 23 (19): 24236-24245.
- [37] Xing Y B, Liu Y Z, Zhao N, et al. Radical passive bleaching of Tm-doped silica fiber with deuterium
 [J]. Optics Letters, 2018, 43(5): 1075-1078.
- [38] Xing Y B, Liu Y Z, Cao R T, et al. Elimination of radiation damage in Tm-doped silica fibers based on the radical bleaching of deuterium loading[J]. OSA Continuum, 2018, 1(3): 987-995.
- [39] Xing Y B, Huang H Q, Zhao N, et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 2015, 40(5): 681-684.
- [40] Xing R X, Sheng Y B, Liu Z J, et al. Investigation

on radiation resistance of Er/Ce co-doped silicate glasses under 5 kGy gamma-ray irradiation [J]. Optical Materials Express, 2012, 2 (10): 1329-1335.

- [41] Xie F H, Shao C Y, Wang M, et al. Research on photo-radiation darkening performance of ytterbiumdoped silica fibers for space applications[J]. Journal of Lightwave Technology, 2019, 37 (4): 1091-1097.
- [42] Xie F H, Shao C Y, Wang M, et al. Photodarkening-resistance improvement of Yb³⁺/ Al³⁺ co-doped silica fibers fabricated via sol-gel method[J]. Optics Express, 2018, 26(22): 28506-28516.
- Xie F H, Shao C Y, Lou F G, et al. Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb³⁺/Al³⁺ co-doped silica fiber
 Chinese Optics Letters, 2018, 16(1): 010603.
- [44] Wang F, Shao C Y, Yu C L, et al. Effect of AlPO₄ join concentration on optical properties and radiation hardening performance of Yb-doped Al₂O₃-P₂O₅-SiO₂ glass [J]. Journal of Applied Physics, 2019, 125(17): 173104.
- [45] Shao C Y, Wang F, Guo M T, et al. Structure and property of Yb³⁺/Al³⁺/Ce³⁺/F⁻-doped silica glasses[J]. Journal of the Chinese Ceramic Society, 2019, 47(1): 120-131.
- [46] Shao C Y, Xie F H, Wang F, et al. UV absorption bands and its relevance to local structures of ytterbium ions in Yb³⁺/Al³⁺/P⁵⁺-doped silica glasses [J]. Journal of Non-Crystalline Solids, 2019, 512: 53-59.
- [47] Bobkov K K, Rybaltovsky A A, Vel'miskin V V, et al. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres[J]. Quantum Electronics, 2014, 44(12): 1129-1135.
- [48] Shao C Y, Jiao Y, Lou F G, et al. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform [J]. Optical Materials Express, 2020, 10(2): 408-420.
- [49] Shao C Y, Ren J J, Wang F, et al. Origin of radiation-induced darkening in Yb³⁺/Al³⁺/P⁵⁺doped silica glasses: effect of the P/Al ratio [J]. The Journal of Physical Chemistry B, 2018, 122 (10): 2809-2820.
- [50] Shao C Y, Xu W, Ollier N, et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: evidence from optical spectroscopy, EPR and XPS analyses [J]. Journal of Applied Physics, 2016, 120(15):

153101.

[51] Wu W D, Yu T, Tao M M, et al. Experimental investigation of gamma-ray irradiation effect on Tm-doped fibers[J]. Chinese Optics, 2018, 11(4): 610-614.

吴闻迪, 余婷, 陶蒙蒙, 等. 掺铥光纤 γ 射线辐照 效应实验研究[J]. 中国光学, 2018, 11(4): 610-614.

- [52] Ma J, Li M, Tan L Y, et al. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment [J]. Optics Express, 2009, 17(18): 15571-15577.
- [53] Ma J, Li M, Tan L Y, et al. Space radiation effect on EDFA for inter-satellite optical communication
 [J]. Optik, 2010, 121(6): 535-538.
- [54] Liu C X, Wu X, Zhu J H, et al. Radiation-resistant Er³⁺-doped superfluorescent fiber sources [J]. Sensors, 2018, 18(7): 2236.
- [55] Wu X, Liu C X, Wu D, et al. Radiation resistance of an Er/Ce codoped superfluorescent source of conventional fiber and photonic crystal fiber [J].
 Optical Engineering, 2017, 56(12): 126109.
- [56] Chen H W, Tao M M, Zhao H C, et al. Experimental investigations on laser power characteristics influenced by gamma-ray irradiated gain fiber[J]. Chinese Journal of Lasers, 2019, 46 (12): 1201005. 谌鸿伟,陶蒙蒙,赵海川,等.γ射线辐照增益光纤

影响激光器功率特性实验[J]. 中国激光, 2019, 46 (12): 1201005.

[57] Wang W, Wang X F, Li J, et al. Experiment on performance of erbium-doped fiber source for high performance fiber-optic gyroscope in a space irradiation environment [J]. Infrared and Laser Engineering, 2012, 41(7): 1826-1830.
王巍, 王学锋, 李晶, 等. 高精度光纤陀螺用掺铒

光纤光源辐照性能试验[J]. 红外与激光工程, 2012, 41(7): 1826-1830.

- [58] Wang Q, Tian C P, Wang Y Y, et al. Review of radiation hardening techniques for EDFAs in space environment[J]. Proceedings of SPIE, 2015, 9521: 95211D.
- [59] Cao J H, Jian S S, Wang M, et al. Co⁶⁰ radiation effects on rare earth doped fibers[J]. Optik, 2016, 127(4): 1677-1680.
- [60] Li J F, Chen W M, Lei X H, et al. Gamma radiation effects on erbium-doped optical fibers properties[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1882-1887.

李竞飞,陈伟民,雷小华,等.伽马辐照对掺铒光

纤性能影响的研究[J].光谱学与光谱分析,2016,36(6):1882-1887.

[61] Wang Y, Li H Z, Hao Z Q. Research of antiradiation technology for the EDFA systems in space environment[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070601.
五告 杰洪林 郝子碑 公回来通信中 EDFA 的拉

王岩, 李洪祚, 郝子强. 空间光通信中 EDFA 的抗 辐射技术的研究[J]. 激光与光电子学进展, 2013, 50(7): 070601.

- [62] Griscom D L. A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled [J]. Physics Research International, 2013, 2013: 379041.
- [63] Griscom D L. Nature of defects and defect generation in optical glasses [J]. Proceedings of SPIE, 1985, 541: 38-59.
- [64] Griscom D L. The natures of point defects in amorphous silicon dioxide[M] // Pacchioni G, Skuja L, Griscom D L. Defects in SiO₂ and related dielectrics: science and technology. Dordrecht: Springer, 2000: 117-159.
- [65] Griscom D L. Optical properties and structure of defects in silica glass [J]. Journal of the Ceramic Society of Japan, 1991, 99(1154): 923-942.
- [66] Griscom D L. Defect structure of glasses: some outstanding questions in regard to vitreous silica[J]. Journal of Non-Crystalline Solids, 1985, 73 (1/2/3): 51-77.
- Griscom D L, Friebele E J, Long K J, et al.
 Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers [J].
 Journal of Applied Physics, 1983, 54 (7): 3743-3762.
- [68] Lezius M, Predehl K, Stower W, et al. Radiation induced absorption in rare earth doped optical fibers
 [J]. IEEE Transactions on Nuclear Science, 2012, 59(2): 425-433.
- [69] Arai T, Ichii K, Tanigawa S, et al. Gammaradiation-induced photodarkening in ytterbium-doped silica glasses[J]. Proceedings of SPIE, 2011, 7914: 79140K.
- [70] Deschamps T, Vezin H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber [J]. Optics Express, 2013, 21(7): 8382-8392.
- [71] Ollier N, Corbel C, Duchez J B, et al. *In situ* observation of the Yb²⁺ emission in the radiodarkening process of Yb-doped optical preform

[J]. Optics Letters, 2016, 41(9): 2025-2028.

- [72] Hu L L. Laser glasses and their applications [M]. Shanghai: Shanghai Scientific & Technical Publishers, 2019.
 胡丽丽.激光玻璃及应用[M].上海:上海科学技 术出版社, 2019.
- [73] Rydberg S, Engholm M. Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers[J]. Optics Express, 2013, 21(6): 6681-6688.
- [74] Mebrouk Y, Mady F, Benabdesselam M, et al. Experimental evidence of Er³⁺ ion reduction in the radiation-induced degradation of erbium-doped silica fibers[J]. Optics Letters, 2014, 39 (21): 6154-6157.
- [75] Hari Babu B, Ollier N, León Pichel M, et al. Radiation hardening in sol-gel derived Er³⁺-doped silica glasses[J]. Journal of Applied Physics, 2015, 118(12): 123107.
- Malchukova E, Boizot B. Reduction of Eu³⁺ to Eu²⁺ in aluminoborosilicate glasses under ionizing radiation[J]. Materials Research Bulletin, 2010, 45 (9): 1299-1303.
- [77] Zhang J, Riesen H. Controlled generation of Tm²⁺ ions in nanocrystalline BaFCl : Tm³⁺ by X-ray irradiation[J]. The Journal of Physical Chemistry A, 2017, 121(4): 803-809.
- [78] Qiu J, Hirao K. Γ-ray induced reduction of Sm³⁺ to Sm²⁺ in sodium aluminoborate glasses [J]. Journal of Materials Science Letters, 2001, 20(8): 691-693.
- [79] Vahedi S, Okada G, Morrell B, et al. X-ray induced Sm³⁺ to Sm²⁺ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of highdoses in microbeam radiation therapy[J]. Journal of Applied Physics, 2012, 112(7): 073108.
- [80] Pal Singh G, Kaur P, Kaur S, et al. Conversion of Ce³⁺ to Ce⁴⁺ ions after gamma ray irradiation on CeO₂-PbO-B₂O₃ glasses[J]. Physica B: Condensed Matter, 2013, 408: 115-118.
- [81] Imai H, Arai K, Imagawa H, et al. Two types of oxygen-deficient centers in synthetic silica glass[J].
 Physical Review B, 1988, 38(17): 12772-12775.
- [82] Amossov A V, Rybaltovsky A O. Oxygen-deficient centers in silica glasses: a review of their properties and structure[J]. Journal of Non-Crystalline Solids, 1994, 179: 75-83.
- [83] Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide [J]. Journal of Non-Crystalline Solids, 1998, 239(1/2/3): 16-48.
- [84] Brower K L. Electron paramagnetic resonance of Al

 E_1' centers in vitreous silica [J] . Physical Review B, 1979, 20(5): 1799-1811.

- [85] Hideo H, Hiroshi K. Radiation-induced coloring and paramagnetic centers in synthetic SiO₂ : Al glasses [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994, 91: 395-399.
- [86] Chah K, Boizot B, Reynard B, et al. Micro-Raman and EPR studies of β-radiation damages in aluminosilicate glass [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 191: 337-341.
- [87] Fujimaki M, Watanabe T, Katoh T, et al. Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO₂ optical-fiber gratings [J]. Physical Review B, 1998, 57(7): 3920-3926.
- [88] Alessi A, Agnello S, Gelardi F M, et al. Influence of Ge doping level on the EPR signal of Ge(1), Ge (2) and E'Ge defects in Ge-doped silica[J]. Journal of Non-Crystalline Solids, 2011, 357(8/9): 1900-1903.
- [89] Kobayashi Y, Sekiya E H, Saito K, et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 2018, 36(13): 2723-2729.
- [90] Leon M, Lancry M, Ollier N, et al. Influence of Al/Ge ratio on radiation-induced attenuation in nanostructured erbium-doped fibers preforms [C] // CLEO: 2015, May 10-15, 2015, San Jose, California. Washington, D. C.: OSA, 2015: SM3L.8.
- [91] Girard S, Ouerdane Y, Bouazaoui M, et al. Transient radiation-induced effects on solid core microstructured optical fibers [J]. Optics Express, 2011, 19(22): 21760-21767.
- [92] Nagasawa K, Tanabe M, Yahagi K. Gamma-rayinduced absorption bands in pure-silica-core fibers
 [J]. Japanese Journal of Applied Physics, 1984, 23 (12): 1608-1613.
- [93] Girard S, Tortech B, Regnier E, et al. Proton- and gamma-induced effects on erbium-doped optical fibers [J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2426-2434.
- [94] Barnes C E, Greenwell R A, Nelson G W. The effect of fiber coating on the radiation response of fluorosilicate clad, pure silica core step index fibers [J]. Proceedings of SPIE, 1987, 787: 69-76.
- [95] Brichard B, Fernandez Fernandez A, Berghmans F,

et al. Origin of the radiation-induced OH vibration band in polymer-coated optical fibers irradiated in a nuclear fission reactor [J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 2852-2856.

- [96] Hanafusa H, Hibino Y, Yamamoto F. Drawing condition dependence of radiation-induced loss in optical fibres[J]. Electronics Letters, 1986, 22(2): 106-108.
- [97] Girard S, Ouerdane Y, Boukenter A, et al. Transient radiation responses of silica-based optical fibers: influence of modified chemical-vapor deposition process parameters [J]. Journal of Applied Physics, 2006, 99(2): 023104.
- [98] Tool A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range [J]. Journal of the American Ceramic Society, 1946, 29(9): 240-253.
- [99] Wang R P, Tai N, Saito K, et al. Fluorine-doping concentration and fictive temperature dependence of self-trapped holes in SiO₂ glasses [J]. Journal of Applied Physics, 2005, 98(2): 023701.
- [100] Babu B H, Lancry M, Ollier N, et al. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction [J]. Applied Optics, 2016, 55(27): 7455-7461.
- [101] Lancry M, Babu B H, Ollier N, et al. Radiation hardening of silica glass through fictive temperature reduction[J]. International Journal of Applied Glass Science, 2017, 8(3): 285-290.
- [102] Girard S, Keurinck J, Boukenter A, et al. Gammarays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 215(1/2): 187-195.
- [103] Girard S, Brichard B, Baggio J, et al. Comparative study of pulsed X-ray and γ-ray radiation-induced effects in pure-silica-core optical fibers [C] // 2005 8th European Conference on Radiation and Its Effects on Components and Systems, September 19-23, 2005, Cap d'Agde, France. New York: IEEE, 2005: 4365552.
- [104] Wijnands T, de Jonge L K, Kuhnhenn J, et al. Optical absorption in commercial single mode optical fibers in a high energy physics radiation field [J].
 IEEE Transactions on Nuclear Science, 2008, 55 (4): 2216-2222.
- [105] Girard S, Marcandella C, Morana A, et al. Combined high dose and temperature radiation effects on multimode silica-based optical fibers [J].

IEEE Transactions on Nuclear Science, 2013, 60 (6): 4305-4313.

- Ladaci A, Girard S, Mescia L, et al. Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy [J].
 Proceedings of SPIE, 2017, 10096: 100690F.
- [107] Ladaci A. Rare earth doped optical fibers and amplifiers for space applications [D]. Lyon, France: Université de Lyon, 2017.
- [108] Griscom D L. Radiation hardening of pure silica core optical fibers and their method of making by ultrahigh-dose gamma ray pre-irradiation: US 5574820
 [P]. 1996-11-12 [2019-12-25]. https://patents.google.com/patent/US5574820A/en.
- [109] Griscom D L. Radiation hardening of pure-silicacore optical fibers by ultra-high-dose γ-ray preirradiation[J]. Journal of Applied Physics, 1995, 77 (10): 5008-5013.
- [110] Yeniay A, Gao R F. Radiation induced loss properties and hardness enhancement technique for ErYb doped fibers for avionic applications [J]. Optical Fiber Technology, 2013, 19(2): 88-92.
- [111] Thomas J, Myara M, Troussellier L, et al. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications [J]. Optics Express, 2012, 20(3): 2435-2444.
- [112] Babu B H, Ollier N, Savelli I, et al. Study of radiation effects on Er³⁺-doped nanoparticles germano-silica fibers [J]. Journal of Lightwave Technology, 2016, 34(21): 4981-4987.
- [113] Ladaci A, Girard S, Mescia L, et al. Radiation hardened high-power Er³⁺/Yb³⁺-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 2018, 43(13): 3049-3052.
- [114] Girard S, Vivona M, Laurent A, et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application [J]. Optics Express, 2012, 20(8): 8457-8465.
- [115] Ladaci A, Girard S, Mescia L, et al. X-rays, γ rays, electrons and protons radiation-induced changes on the lifetimes of Er^{3+} and Yb^{3+} ions in silica-based optical fibers [J]. Journal of Luminescence, 2018, 195: 402-407.
- [116] Vivona M, Girard S, Marcandella C, et al. Radiation hardening of rare-earth doped fiber amplifiers[J]. Proceedings of SPIE, 2017, 10564: 105641H.
- [117] Liu X X, Liu C P, Chen G, et al. Influence of cerium ions on thermal bleaching of photo-darkened ytterbium-doped fibers [J]. Frontiers of Optoelectronics, 2018, 11(4): 394-399.

- [118] Faile S P, Schmidt J J, Roy D M. Irradiation effects in glasses: suppression by synthesis under highpressure hydrogen[J]. Science, 1967, 156(3782): 1593-1595.
- [119] Nagasawa K, Hoshi Y, Ohki Y, et al. Improvement of radiation resistance of pure silica core fibers by hydrogen treatment [J]. Japanese Journal of Applied Physics, 1985, 24 (9): 1224-1228.
- [120] Girard S, Laurent A, Pinsard E, et al. Proton irradiation response of hole-assisted carbon coated erbium-doped fiber amplifiers [J]. IEEE Transactions on Nuclear Science, 2014, 61 (6): 3309-3314.
- [121] Girard S, Laurent A, Pinsard E, et al. Radiationhard erbium optical fiber and fiber amplifier for both low- and high-dose space missions [J]. Optics Letters, 2014, 39(9): 2541-2544.
- [122] Liu S, Zheng S P, Yang K, et al. Radiation-induced change of OH content in Yb-doped silica glass [J]. Chinese Optics Letters, 2015, 13(6): 060602.
- [123] Griscom D L. Erratum: "Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation" [J. Appl. Phys. 77, 5008 (1995)][J]. Journal of Applied Physics, 2015, 118 (8): 5008.
- [124] Kim Y, Ju S, Jeong S, et al. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber[J]. Optics Express, 2016, 24(4): 3910-3920.
- [125] Hosono H, Ikuta Y, Kinoshita T, et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO₂ [J]. Physical Review Letters, 2001, 87(17): 175501.
- [126] Staurt B. Infrared spectroscopy: fundamentals and applications [M]. West Sussex, England: John Wiley and Sons, Ltd., 2004.
- [127] Humbach O, Fabian H, Grzesik U, et al. Analysis of OH absorption bands in synthetic silica [J]. Journal of Non-Crystalline Solids, 1996, 203: 19-26.
- [128] Stone J. Interactions of hydrogen and deuterium

with silica optical fibers: a review [J]. Journal of Lightwave Technology, 1987, 5(5): 712-733.

- [129] Ramsey A T, Tighe W, Bartolick J, et al. Radiation effects on heated optical fibers [J]. Review of Scientific Instruments, 1997, 68(1): 632-635.
- [130] Söderlund M J, Montiei i Ponsoda J J, Koplow J P, et al. Thermal bleaching of photodarkening in ytterbium-doped fibers [J]. Proceedings of SPIE, 2010, 7580: 75800B.
- [131] Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides [J]. Applied Optics, 1981, 20(19): 3448-3452.
- [132] Liu Y Z, Xing Y B, Lin X F, et al. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading [J]. Optics Letters, 2020, 45 (9): 2534-2537.
- Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica-based preforms and optical fibers: I: experimental study with canonical samples [J]. IEEE Transactions on Nuclear Science, 2008, 55 (6): 3473-3482.
- [134] Girard S, Richard N, Ouerdane Y, et al. Radiation effects on silica-based preforms and optical fibers:
 II: coupling *ab initio* simulations and experiments
 [J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3508-3514.
- [135] Girard S, Mescia L, Vivona M, et al. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach [J]. Journal of Lightwave Technology, 2013, 31 (8): 1247-1254.
- [136] Mescia L, Girard S, Bia P, et al. Optimization of the design of high power Er³⁺/Yb³⁺-codoped fiber amplifiers for space missions by means of particle swarm approach [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2014, 20(5): 484-491.
- [137] Ladaci A, Girard S, Mescia L, et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 2017, 121(16): 163104.